
ELASTIC CLOUD COMPUTING FOR
QOS-AWARE DATA PROCESSING

Shigeru Imai

Submitted in Partial Fullfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Approved by:
Dr. Carlos A. Varela, Chair

Dr. Stacy Patterson
Dr. Mohammed Zaki
Dr. Rajkumar Buyya

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, New York

[May 2018]
Submitted April 2018

CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGMENT . x

ABSTRACT . xii

1. INTRODUCTION . 1

1.1 Background of Cloud Elasticity . 1

1.1.1 Data Processing Models . 1

1.1.2 Cloud Service Models . 2

1.1.3 Cloud Deployment Types . 4

1.1.4 QoS-Aware Elastic Resource Allocation 5

1.1.5 Scheduling Techniques . 7

1.2 Contributions . 8

1.3 Outline . 10

2. ELASTIC BATCH DATA PROCESSING . 11

2.1 Auto-Scaling Using Application-Level Migration 11

2.1.1 Introduction . 11

2.1.2 Cloud Operating System . 12

2.1.3 Experiments . 13

2.1.4 Summary . 16

2.2 Cost-Optimal Heterogeneous Virtual Machine Scheduling over Hybrid Clouds 17

2.2.1 Introduction . 17

2.2.2 Workload-Tailored Elastic Compute Unit 18

2.2.3 VM Scheduling Algorithm . 20

2.2.4 Experiments . 26

2.2.5 Summary . 28

3. ELASTIC MICRO-BATCH DATA PROCESSING 30

3.1 Introduction . 30

3.2 Air Traffic Management Problem . 32

3.2.1 Problem Formulation . 32

ii

3.2.2 Lagrangean Decomposition . 34

3.3 Elastic Air Traffic Management Middleware 36

3.3.1 Background . 36

3.3.2 Application Implementation . 37

3.3.3 Middleware Architecture . 37

3.4 Virtual Machine Scheduling . 38

3.4.1 Performance Characterization of ILP Optimization 38

3.4.2 Resource Prediction Model . 41

3.4.3 Elastic Scheduling Algorithms . 42

3.4.3.1 Baseline Scheduling . 42

3.4.3.2 Speculative Scheduling . 44

3.4.3.3 VM Allocation Policy . 45

3.5 Evaluation . 45

3.5.1 Experimental Settings . 45

3.5.2 Elastic Behavior Confirmation . 46

3.5.2.1 Nationwide Dataset . 46

3.5.2.2 Dallas Dataset . 48

3.5.3 Comparison with Static Scheduling 48

3.5.4 Comparison with Auto Scaling . 51

3.6 Summary . 52

4. SUSTAINABLE ELASTIC STREAM DATA PROCESSING 53

4.1 Introduction . 53

4.2 Background of Elastic Stream Processing . 57

4.2.1 Distributed Stream Processing Systems 57

4.2.1.1 Comparison of Distributed Stream Processing Systems . . . 57

4.2.1.2 Scaling Stream Processing Applications 60

4.2.2 Elastic Stream Processing Systems 61

4.2.2.1 Performance Metrics . 61

4.2.2.2 Summary of Elastic Stream Processing Systems 63

4.3 A Framework for Sustainable Elastic Stream Data Processing 64

4.3.1 Maximum Sustainable Throughput 64

4.3.2 Sustainable Elastic Stream Data Processing Framework 66

4.4 Summary . 67

iii

5. MAXIMUM SUSTAINABLE THROUGHPUT PREDICTION 68

5.1 Introduction . 68

5.2 Related Work . 69

5.3 MST Prediction Framework . 70

5.3.1 Linear Regression . 71

5.3.2 Framework Overview . 71

5.3.3 MST Prediction Models . 72

5.3.4 Phase 1: VM Subset Selection . 75

5.3.4.1 VM Subset Selection Method 75

5.3.4.2 VM Subset Selection Results 76

5.3.5 Phase 2: Model Training & Selection 78

5.4 Evaluation of MST Prediction . 81

5.5 Discussion . 84

5.6 Summary . 86

6. UNCERTAINTY-AWARE ELASTIC VIRTUAL MACHINE SCHEDULING . . . 87

6.1 Introduction . 87

6.2 Formulation of VM Scheduling Problem . 88

6.3 VM Scheduling Techniques . 89

6.3.1 Baseline MST . 89

6.3.2 Online Model Learning . 90

6.3.3 Uncertainty-Awareness for MST . 90

6.3.4 Uncertainty-Awareness for Workload Forecasting 92

6.3.4.1 Workload Forecasting . 92

6.3.4.2 Highest Workload Estimation 93

6.3.4.3 VM Scheduling . 94

6.3.5 Uncertainty-Awareness for both MST and Workload Forecasting . . . 95

6.4 Evaluation Setup . 96

6.4.1 Test Applications and Workloads . 96

6.4.2 Offline MST Model Training . 98

6.4.3 Workload Forecasting Model Training 99

6.5 Evaluation . 99

6.5.1 Common Experimental Settings . 99

6.5.1.1 Simulation Time Horizon 99

6.5.1.2 Workloads and Test Applications 100

iv

6.5.1.3 Hypothetical Ground Truth MST 101

6.5.1.4 Baseline Scheduling . 101

6.5.1.5 Evaluation Metrics . 102

6.5.2 Evaluation: Scheduling Policy vs. QoS & Cost 102

6.5.2.1 Experimental Settings . 103

6.5.2.2 Scheduling Results . 104

6.5.3 Evaluation: QoS Satisfaction Target vs. QoS & Cost 106

6.5.4 VM Allocation Sequence . 107

6.6 Related Work . 107

6.7 Summary . 109

7. CONCLUSION AND FUTURE DIRECTIONS 110

7.1 Chapter Summary . 110

7.2 Future Directions . 112

7.2.1 Future Elastic Resource Allocation Framework 112

7.2.2 Elastic Resource Allocation for Serverless Computing 114

7.2.3 Improvements to Presented Techniques 115

REFERENCES . 117

APPENDICES

A. Peak Calculations for Model 1 . 128

v

LIST OF TABLES

1.1 Different aspects of elastic resource allocation addressed in this thesis. 9

2.1 Test VM configurations for fixed VMs vs. COS. 14

2.2 Amazon EC2 on-demand instances (as of September 2013). 19

2.3 ECU and WECU values for the trap application (1 WECU = 2758.54 tasks/sec). 20

3.1 Amazon EC2 VM instance types used in experiments (information as of Novem-
ber 2015). 40

3.2 Non-linear transforms used for linear regression. 42

3.3 Key notations used in scheduling algorithms. 42

3.4 VM hours, cost, and latency violations for elastic and static scheduling algo-
rithms (Nationwide dataset). 50

3.5 VM hours, cost, and latency violations for elastic and static scheduling algo-
rithms (Dallas dataset). 50

4.1 Comparison of representative distributed stream processing systems (as of 2018). 58

4.2 Summary of recent elastic stream processing systems. 64

5.1 Best VM subsets S∗ and prediction errors in RMSE for variable maximum VM
counts (Mtrain ∈ 5, ..., 32). 78

5.2 Weights of Models 1 and 2 after training. 82

6.1 Selected ARMA models for the test workloads. 99

6.2 Workloads and test applications (MST models) used for evaluations. 100

6.3 VM scheduling policies for evaluation. 103

vi

LIST OF FIGURES

1.1 Layered architecture of cloud services. 3

1.2 Cloud deployment types explored in this thesis. 4

1.3 High-level view of QoS-aware elastic resource allocation. 6

1.4 Chapter organization of the thesis. 10

2.1 System architecture of the Cloud Operating System. 13

2.2 VM CPU utilization from Heat Diffusion problem running on the Cloud Oper-
ating System. 15

2.3 Throughput of the Heat Diffusion problem running on the Cloud Operating
System. 15

2.4 Comparison of throughput for the Heat Diffusion problem between fixed VMs
and the Cloud Operating System. 16

2.5 Workload scalability over a hybrid cloud. 18

2.6 Relative performance of Amazon EC2 instances and private physical nodes (node
A and node B). the performance of m1.small is 1.0. 20

2.7 Cost-optimal configurations among other possible configurations. 24

2.8 Runtime results for (a) ECU-based and (b) WECU-based resource configurations. 28

3.1 Number of U.S. commercial flights on January 18th, 2014 (created from data
available on [65]). 31

3.2 Example of the simplified air traffic management problem. 33

3.3 Architecture of the elastic air traffic management middleware framework. . . . 39

3.4 Characteristics of the ILP problem execution time. 41

3.5 Experimental results for the Nationwide dataset. 47

3.6 VM allocation sequence for the speculative scheduling algorithm created from
the Nationwide dataset. 48

3.7 Experimental results for the Dallas dataset. 49

3.8 CPU utilization and VM allocation by a threshold-based auto scaling. 52

4.1 Common real-time stream processing environment. 54

vii

4.2 Example time series of input data rates and processing throughput. 55

4.3 Examples of scaling an application topology with three processing units (u = 3)
to three and five machines (m = 3 and 5), respectively. Each machine has two
vCPUs (α = 2) and one vCPU is assigned per thread (β = 1). 60

4.4 Maximum sustainable throughput measurement environment. 65

4.5 Convergence of throughput for a web access log processing stream application. 66

4.6 Proposed sustainable elastic stream data processing framework. 67

5.1 Overview of the MST prediction framework. 72

5.2 MST prediction results using the best VMs subset: S∗ = {3, 4, 6, 8, 24}. X-axis:
number of VMs. Y-axis: MST [Mbytes/sec]. 79

5.3 MST prediction results for typical use-case benchmarks: (a) Grep, (b) Rolling
Count, (c) Unique Visitor, (d) Page View, and (e) Data Clean, and a machine
learning application: (f) VHT, using S∗ = {3, 4, 6, 8, 24} for Models 1 and 2.
X-axis: number of VMs. Y-axis: MST [Mbytes/sec]. 82

5.4 Validation error (RMSE) and selected models for the typical use-case bench-
marks. Models are trained with S∗ = {3, 4, 6, 8, 24}. 83

5.5 Prediction error (MAPE) for the typical use-case benchmarks using mean value
of actual MST samples and prediction made by the proposed framework. . . . 84

6.1 Probability density function for normal distribution N (τ̂(m) − λ(t), σ̂2
τ). The

shaded area corresponds to the value of Pr[τ(m)− λ(t) ≥ 0]. 91

6.2 Finding the highest expected workload in the scheduling cycle [t, t+ C). 94

6.3 Workloads used for evaluation. Each workload has one week of data: (a) World
Cup 98 (6/29/1998-7/5/1998, time in UTC), (b) Tweets (4/10/2016-4/16/2016,
time in EDT), and (c) ADS-B (8/13/2017-8/19/2017, time in UTC). 97

6.4 Selected MST prediction models after training. Models from (a) Grep to (g)
Rolling Hashtag Count are trained with samples obtained from up to 24 VMs in
S∗ = {3, 4, 6, 8, 24}, whereas (h) Rolling Flight Distances is trained with samples
obtained from up to 14 VMs in Sflight = {1, 2, 3, 5, 6, 8, 9, 11, 12, 14}. 98

6.5 Example of hypothetical ground truth probability distribution created from the
measured MST samples for the Grep benchmark. 101

6.6 Average (a) QoS satisfaction rates and (b) Relative costs across the all appli-
cations for different scheduling policies in Table 6.3. QoS satisfaction target:
ρ = 0.95. Error bars show ± 1 standard deviation. 105

viii

6.7 QoS satisfaction rates and relative costs for the #0, #1, #5, and #7 scheduling
policies in Table 6.3. QoS satisfaction target: ρ = 0.95. Error bars show ± 1
standard deviation. 106

6.8 QoS satisfaction target ρ vs. actual QoS satisfaction rates and relative costs.
Error bars show ± 1 standard deviation. 107

6.9 Scheduling results for the Grep application with the FIFA world cup 1998 website
access workload (6/29/1998-7/5/1998): (a) Input workload and allocated MST,
(b) Allocated number of VMs, and (c) Backlogged data. 108

ix

ACKNOWLEDGMENT

I have been fortunate to have two wonderful advisors: Prof. Carlos A. Varela and Prof.

Stacy Patterson. I would like to express the deepest appreciation to Prof. Carlos A. Varela.

Throughout my time at RPI, he has been supporting me with great enthusiasm and patience.

He has always motivated me with inspirational questions and given me great freedom in

my research. I am also deeply grateful to Prof. Stacy Patterson for her thoughtful and

practical guidance. Her advice on distributed systems and optimization problems has been

instrumental to this dissertation. It is an honor to be one of her first PhD students at RPI.

This dissertation would not have been possible without their support.

My gratitude extends to my dissertation committee members, Prof. Zaki and Prof.

Buyya, for their insightful comments and questions to my dissertation. Their feedback

inspired me to envision a greater view of my work.

I would also like to thank the current and former Worldwide Computing Laboratory

members, especially Paul, Freddie, Sida, Alessandro, Wennan, Carlos Gomez, Rory, Richard,

Ping, Qingling, Yousaf, and Wei, for interesting technical discussions and enjoyable moments

at the lab. Thanks to Teruhiko, Juntao, Xiaohui, Yao, Ning, Antwane, Will, Jamal, Saori,

Colin, Yurie, Steve, Chikako, Aoi, Toru, and friends from SUNY Albany for their friendship.

I will never forget countless fun moments I shared with them. Thanks to the faculty and

staff of the Computer Science Department, especially Chris Coonrad and late Terry Hayden,

for always being there to help me and making me feel at home.

I would like to express my gratitude to Yamada Corporation Fellowship, NSF, and

Air Force Scientific Office of Research for the financial support I received over the years.

Amazon Web Services Cloud Credits for Research and Google Cloud Platform Credit Award

generously granted me to use their cloud resources.

Finally, I would like to thank my family for their love and moral support. Most of all,

x

I appreciate my beloved wife Miki for her everyday support, understanding, patience, and

encouragement during my long PhD journey. Thank you.

xi

ABSTRACT

Infrastructure-as-a-Service (IaaS) clouds such as Amazon EC2 offer various types of virtual

machines (VMs) through pay-per-use pricing. Elastic resource allocation allows us to allocate

and release VMs as computing demand changes while satisfying Quality-of-Service (QoS)

requirements. In this thesis, we explore QoS-aware elastic resource allocation for three

different data processing models: batch, micro-batch, and streaming.

First, we present two frameworks for elastic batch data processing. The first elastic

batch data processing framework supports autonomous VM scaling using application-level

migration. It does not require any prior knowledge about the target application, but dynam-

ically reconfigures the application to keep the CPU utilization within a certain range. The

second framework uses Workload-tailored Elastic Compute Units as a measure of comput-

ing resources analogous to Amazon EC2’s ECUs. Given a deadline, our framework finds the

cost-optimal resource configuration of heterogeneous VMs to satisfy the required throughput.

Next, we propose an elastic micro-batch data processing framework for continuous air

traffic optimization. Air traffic optimization is commonly formulated as an integer linear

programming (ILP) problem. For continuous optimization, we periodically solve ILP prob-

lems with regular intervals, where each problem is a micro-batch data processing job. Since

the fluctuating number of flights creates dynamically changing computational demand, our

framework predicts future workload and proactively schedules VMs to solve the ILP problems

in a timely manner.

Finally, we propose a framework for sustainable elastic stream processing based on the

concept of Maximum Sustainable Throughput (MST). It is the maximum processing through-

put a streaming application can process indefinitely for a number of VMs. Stream processing

is sustainable if the system’s MST is always greater than the input data rates of incoming

workload. Using MST and future workload prediction models, our framework proactively

xii

schedules VMs to keep the stream processing sustainable. It explicitly incorporates uncer-

tainties in both MST and workload prediction models, and estimates the number of VMs to

satisfy a certain probability criteria.

Our studies show that QoS-aware elastic data processing is effective for these process-

ing models in both performance scalability and cost savings. For batch processing, elastic

resource scheduling helps achieve the target QoS metrics such as CPU utilization and job

completion time. For both micro-batch and stream processing with fluctuating workloads,

QoS-aware elastic scheduling saves up to 49% cost compared to a static scheduling that cov-

ers the peak workload to achieve a similar level of throughput QoS satisfaction. These results

show potential for future fully automated cloud computing resource management systems

that efficiently enable truly elastic and scalable general-purpose workload.

xiii

CHAPTER 1

INTRODUCTION

Cloud computing has changed the way people use computing resources through its pay-

per-use cost model. Public cloud providers such as Amazon Web Services and Google Cloud

Platform offer various types of computing services with different costs and Quality-of-Service

(QoS) policies, enabling us to use the power of cloud computing to process a huge amount

of data in a cost-efficient manner. One of the key aspects of cloud computing is elastic-

ity [1]. Elastic resource allocation allows us to allocate and release virtual machines (VMs)

dynamically as computing demand changes. However, to decide when and how many VMs

to allocate and release is not a trivial task. Moreover, depending on the use case, there are

different ways to exploit cloud elasticity. In this chapter, we first introduce the background

of cloud elasticity in Section 1.1. In Section 1.2, we present how we address different aspects

of elastic resource allocation in our contributions. In Section 1.3, we show the outline of this

thesis.

1.1 Background of Cloud Elasticity

1.1.1 Data Processing Models

We show some of the representative distributed data processing models as follows.

• Batch processing is used to process stored datasets all at once with high throughput.

Depending on the size of the dataset, processing latency can be very long up to hours

or even days. One of the typical use cases is Extract, Transform, Load (ETL) process,

which involves data extraction from multiple sources, data transformation (e.g., clean,

join), and data loading to a target data storage (e.g., relational database). Popular

frameworks include Hadoop [2] and Spark [3].

1

2

• Stream processing is used to process an unbounded stream of events in near real-

time. Unlike batch processing, stream processing digests one event at a time or multiple

events collected in a time window. Thus, processing latency is expected to be much

lower than batch processing. There are many applications that require low latency,

for example, anomaly detection [4], [5], Twitter trend analysis [6], [7], and taxi traffic

analysis [8]. Distributed scalable stream processing systems such as Storm [6], Flink [9],

and Samza [10] have been actively used and developed.

• Micro-batch processing repeats batch processing with smaller datasets in a short

time interval. Spark Streaming [11] takes a micro-batch approach and is built on top

of Spark to take advantage of Spark’s fault tolerance and high throughput. Alterna-

tively, we can manually submit small batch jobs to a batch data processing system

periodically. One of the benefits of this approach is that we can use batch processing

algorithms while generating outputs periodically just as stream processing.

1.1.2 Cloud Service Models

As National Institute of Standards and Technology (NIST) defines, cloud computing

has several types of service models including: Infrastructure-as-a-Service (IaaS), Platform-

as-a-Service (PaaS), and Software-as-a-Service (SaaS) [12]. The relationship between these

models is shown in Figure 1.1. In the IaaS model, the cloud service provider only offers bare

virtual machines (VMs)—abstractions of physical machines (PMs)—with various prices de-

pending on the quality of service. Therefore, application developers need to either manually

implement non-functional concerns such as security, scalability, and fault-tolerance or use

middleware to address them. IaaS affords great flexibility for developing general-purpose

applications and installing almost any software on VMs. In the PaaS model, the service

provider offers an application development framework that takes care of most non-functional

concerns. Even though the framework is restricted to a particular class of applications, appli-

cation developers can benefit from the framework and concentrate on their own application

3

models. In the SaaS model, the service provider offers complete application software from

the cloud to the end user. For example, to build an SaaS service, an SaaS developer can use

PaaS, IaaS, or a bare metal physical infrastructure with increasing complexity.

��������

	

��
����� ����

����������

�����������

�����
������������
����

����

����

������
���� !�" !����������#��
�������

��
����������������� ���$�
�����%

Figure 1.1. Layered architecture of cloud services.

In addition to these standard models, Container-as-a-Service (CaaS) and Function-as-

a-Service (FaaS) are emerging as shown in Figure 1.1. In the CaaS model, the cloud service

provider offers container as the unit of resource allocation. Unlike VMs offer hardware-

level virtualization, containers offer operating system-level virtualization based on two key

features provided by the Linux kernel [13]: 1) kernel namespaces to isolate the container

from the host (e.g., a process inside the container cannot see other processes outside the

4

container) and 2) control groups (known as cgroups) to limit resources (e.g., CPU, memory,

etc.) used by a container. Since containers are light-weight compared to VMs, they start up

quickly in a few seconds. In the FaaS model, the cloud service provider enables serverless

application development [14]. The user of FaaS service does not need to rent VMs, but

provide event-driven application logic (i.e., function) and pay only for the compute time

consumed by functions. The functions are invoked upon the reception of events and the

FaaS service provider automatically scales up resources as the number of events grows.

Regardless of which cloud service model we choose, to realize automated elasticity

from the end user perspective, there must be a resource scheduler to control computational

resources: PMs, VMs, or containers. In this thesis, we focus on the IaaS model and study

on elastic VM scheduling.

1.1.3 Cloud Deployment Types

The cloud service models shown in Section 1.1.2 can be provided through the deploy-

ment types as shown in Figure 1.2. The following three deployment types are recognized as

standard by NIST [12].

Figure 1.2. Cloud deployment types explored in this thesis.

5

• Private cloud: The cloud infrastructure is owned and used by a single organization.

• Public cloud: The cloud infrastructure is owned by a commercial service provider

and is open for the public use.

• Hybrid cloud: The cloud infrastructure consists of two or more different types of

clouds. Typically, public clouds are used to process temporary workload spikes.

In addition to the above standard deployment types, the following relatively new de-

ployment types are emerging.

• Multi-cloud: The cloud infrastructure consists of multiple clouds (thus, hybrid cloud

is a type of multi-cloud). Unlike the intercloud model [15], [16] requires an agreement

between multiple cloud providers to give users transparent access to the cloud, the

multi-cloud model does not need such agreement. That is, multi-cloud model is more

client-centric, and the interoperability between multiple clouds is maintained by the

user using libraries (e.g., Apache Libcloud [17]) or brokers [18]. There are various

benefits of using multi-cloud. For example, processing geo-distributed datasets using

distributed data centers to take advantage of data locality, storing backup data across

different cloud service providers to increase the data redundancy, and avoiding to

depend on only one cloud service provider (i.e., vendor lock-in).

• Mobile-cloud: To augment the limited computing resources of mobile devices, clouds

are used through mobile communication network or WiFi [19]. To avoid potential large

latency caused by accessing public clouds through Wide Area Network, proximate

computing infrastructure called cloudlet has also been proposed [20]. By offloading

resource-intensive tasks from the mobile device to clouds, we can increase the mobile

device’s battery life and enhance user experience [21].

1.1.4 QoS-Aware Elastic Resource Allocation

Figure 1.3 shows a high-level view of QoS-aware elastic resource allocation (often re-

ferred to as auto-scaling [22]) in IaaS clouds. It repeats the following steps to satisfy a

6

Quality-of-Service (QoS) metric requested by the user.

Scheduler

Cloud
Platform

Target Quality-of-Service (QoS)
(e.g., CPU util < 80%,

throughput > 100 Kbytes/sec)

Control

application
performance

Performance
Model

Scheduler

Add or release

VMs

VMs

Performance metric:
(e.g., CPU util., throughput)

Model:

Cloud

Application

Figure 1.3. High-level view of QoS-aware elastic resource allocation.

1. The cloud platform such as Amazon EC2 provides x VMs to the cloud application.

2. The cloud application runs on the VMs and produces some performance metric y such

as CPU utilization or throughput.

3. (Optional) The performance model ŷ = f(x) is updated using a sample (x, y) to

estimate the performance produced by x VMs.

4. The scheduler takes one of the following steps depending on the scheduling approach

(see Section 1.1.5 for details):

(a) Model-based approach: Using the performance model f , the scheduler estimates

the required number of VMs x′ to satisfy the target QoS. It then requests alloca-

tion or deallocation of ∆x (= |x− x′|) VMs.

(b) Model-free approach: The scheduler checks if the monitored performance metric

y satisfies the target QoS. If not, it requests allocation or deallocation of ∆x VMs

(∆x is constant).

7

In the cloud services mentioned in Section 1.1.2, QoS is typically used in Service-

Level Agreements (SLAs). A SLA is a contract between the service provider and customer

that includes the level of service guarantees defined by QoS metrics such as availability

and response time. If the service provider violates a service guarantee, they pay some

penalty as agreed to in the SLA. For example, the SLA for Amazon EC2 says that Amazon

makes reasonable efforts to maintain at least 99.95% of service availability, but in case the

availability becomes less than 99.95%, it gives back 10% of the total charges paid by the

customer [23]. Commercial cloud providers mainly focus on service availability for their

SLAs; they do not offer any performance guarantees [24].

In academic research, QoS-aware elastic VM allocation commonly optimizes cost while

meeting a performance QoS. For example, Buyya et al. propose an architecture for SLA-

oriented resource provisioning [25] and illustrate an implementation of deadline-constrained

resource provisioning with Aneka platform [26]. Example application areas for cost-efficient

resource allocation include Bag-of-Tasks [27]–[30], MapReduce [31]–[33], data streaming [34]–

[37], and workflow [38]–[41].

1.1.5 Scheduling Techniques

We categorize existing scheduling techniques used in elastic resource allocation from

two aspects: 1) whether the scheduling is based on a model; and 2) whether the scheduling

involves future workload prediction.

Model-based vs. Model-free : In the model-based scheduling, the scheduler decides the

quantity of computational resources x (e.g., number of VMs, CPUs, parallelism) using a

model f(x) that estimates a metric of interest (e.g., latency, throughput). If the scheduler

is to meet certain QoS constraints, an estimate of x is obtained as follows:

x̂ = argmin
x

[QoS constraints with f(x)]. (1.1)

8

Examples of common QoS constraints include:

Latency constraint : f(x) ≤ target latency, (1.2)

Throughput constraint : f(x) ≥ input workload, (1.3)

CPU utilization constraint : f(x) ≤ target upper CPU utilization. (1.4)

Unlike the model-based scheduling, model-free scheduling adds or removes fixed amount

of resources without using any models until QoS constraints are satisfied. Thus, f(x) in

constraints (1.2)-(1.4) can be replaced with an observed metric y in the model-free scheduling.

Proactive vs. Reactive : To implement an elastic resource scheduler for fluctuating

workloads (i.e., micro-batch and streaming), we can either reactively adjust the number of

VMs at run-time in response to resource utilization metric changes (e.g., CPU, memory,

network), or proactively estimate the number of VMs using prediction models for application

performance and future workload. The former includes a threshold-based approach, as used

in AWS AutoScaling (Step Scaling) [42], and reinforcement learning [43], [44]. In the latter

approach, various types of application performance models are proposed as we describe in

Section 4.2.2.1. Auto-regression and ARMA [45] are widely used to predict time series and

have been successfully applied to elastic cloud systems [46], [47]. If the system foresees a

growing demand in advance, it can allocate new VMs and make them ready before the spike

actually occurs so that we can avoid the performance degradation.

1.2 Contributions

In this thesis, we focus on the perspective of IaaS users and explore QoS-aware elastic

resource allocation from several different aspects of cloud computing as shown in Table 1.1.

The contributions of this thesis are summarized as follows:

• An elastic middleware framework based on application-level migration as the reconfig-

9

Table 1.1. Different aspects of elastic resource allocation addressed in this
thesis.

Processing Model
Batch Micro-batch Streaming

Cloud
Private Hybrid Public Public

Deployment

Scheduling
Reactive, Reactive, Proactive, Proactive,

Model-free Model-based Model-based Model-based
Performance CPU

Job finish time Job finish time MST1

Metric utilization
Performance

None Linear Non-linear Non-linear
Model

uration strategy [48].

• The notion of Workload-tailored Elastic Compute Unit (WECU) as a unit of computing

power analogous to Amazon EC2’s ECUs, but customized for a specific workload. A

dynamic programming-based VM scheduling algorithm to obtain the cost-optimal VM

configuration [28].

• A micro-batch elastic middleware framework that is designed to solve integer linear

programming problems periodically [49].

• A framework for sustainable elastic stream processing [50] that consists of the following

sub contributions:

– A cost-efficient maximum throughput prediction framework for stream processing

applications, which statistically determines the best set of VM configurations to

train prediction models [51].

– A robust VM scheduling method that incorporates uncertainties in both applica-

tion performance and workload prediction models [37].

1Maximum Sustainable Throughput, see Section 4.3.1 for details.

10

1.3 Outline

The rest of the proposal is organized as shown in Figure 1.4. Chapters are organized

according to the processing models. Chapter 2 presents two elastic batch data processing

frameworks: Section 2.1 shows an auto-scaling framework using application-level migration,

and then Section 2.2 shows a cost-optimal scheduling framework over hybrid clouds. Chap-

ter 3 shows an elastic micro-batch data processing framework for an air traffic optimization

problem. Chapters 4, 5, and 6 are about sustainable elastic stream data processing. Chap-

ters 4 first introduces background and a framework for sustainable elastic stream processing.

Chapter 5 shows a framework for maximum sustainable throughput prediction, and Chap-

ter 6 presents an uncertainty-aware VM scheduling framework that is designed to consider

uncertainties from both application performance and workload prediction models. Chapter 7

summarizes results from each chapter and discusses potential future directions.

��������	

���������	��

��������

��
�	�������������

�����

	��

���������

��
�	���	����������

����������

	��

���������

���������	
�
��
�	��

�����������������

	��

��������

���	����

�����������

����	��	��

���������

�������	����������

��
�	�� 	������

����	����������	��

���������

!�����
	�������

"�������	����	��

Figure 1.4. Chapter organization of the thesis.

CHAPTER 2

ELASTIC BATCH DATA PROCESSING

2.1 Auto-Scaling Using Application-Level Migration

2.1.1 Introduction

One way to exploit scalability afforded by cloud computing is to use VM migration

[52], [53], [54], [55]. For instance, Sandpiper [56] monitors CPU, network, and memory

usage, and then predicts the future usage of these resources based on the profile created from

the monitored information. If a physical machine gets high resource utilization, Sandpiper

tries to migrate a VM with higher resource utilization to another physical machine with

lower resource utilization and balances the load between physical machines. As a result,

the migrated VM gets better resource availability and therefore succeeds to scale up its

computation.

On the other hand, it is also possible to achieve load balancing and scalability with

finer granularity using application-level migration. Due to its smaller footprint compared

to the VM’s, application-level migration takes less time and uses less network resources.

Also, it can achieve better load balancing and scaling that cannot be done by the VM-

level coarse granularity. However, migration or coordination of distributed execution is

not transparent for application developers in general. One solution is using an application

platform with transparent application migration capabilities. Simple Actor Language System

and Architecture (SALSA) [57] is an actor-oriented programming language that simplifies

Portion of this chapter previously appeared in: Shigeru Imai, Thomas Chestna, and Carlos A. Varela,
“Elastic scalable cloud computing using application-level migration”, in Proc. IEEE/ACM Int’l Conf. on
Utility and Cloud Computing (UCC 12), 2012, pp. 91-98.

Portion of this chapter previously appeared in: Shigeru Imai, Thomas Chestna, and Carlos A. Varela,
“Accurate resource prediction for hybrid IaaS clouds using workload-tailored elastic compute units,” in Proc.
IEEE/ACM Int’l Conf. on Utility and Cloud Computing (UCC 13), 2013, pp.171-178.

11

12

dynamic reconfiguration for mobile and distributed computing through its features such as

universal naming and transparent migration over the Internet. Applications composed of

SALSA actors can be easily reconfigured at runtime through actor migration.

In this section, we present the Cloud Operating System (COS), a middleware frame-

work that is based on SALSA. It supports 1) opportunistic creation and removal of VMs

over private clouds and 2) autonomous actor migration on VMs to enable cloud computing

applications to effectively scale up and down. Using COS, application programmers can

focus on their problem of interest and leave resource management to COS. Actors on COS

autonomously migrate between VMs if it is beneficial in terms of resource availability in the

target node, communication cost with other actors, and the cost for migration.

2.1.2 Cloud Operating System

The system architecture of COS is shown in Figure 2.1. Whereas the COS man-

ager makes decisions whether it allocates or deallocates VMs, Internet Operating System

(IOS) [58] works as a load-balancer. It tries to balance the workload among the VMs by

autonomously migrating SALSA actors. To avoid thrashing behavior due to frequent VM

creation and termination, the following heuristics is implemented in the COS manager. We

choose this threshold approach because it is simple yet effective to avoid thrashing behavior

as we have seen in [58].

• The COS manager decides to create a new VM only if it has received high CPU

utilization events from all of the running nodes within a certain time range (e.g., 10

seconds). The reason is that there may still remain under-utilized VMs and IOS agents

may be able to balance the load and decrease the overall CPU utilization of VMs.

• Some workloads alternate between high and low CPU usage. If criteria of terminating

VMs are too strict, this type of workload suffers very much. Let the constants to detect

low and high CPU utilization be k LOW and k HIGH respectively for checking past n

13

…

Physical Node #1

IOS Agent

…

Node Manager

Domain-U

Domain-0

1. Notify

high/low

CPU

utilization

Physical Node #2

Node Manager

COS

Manager

Actors

4. Request VM

creation / termination

2. Pass the

event to COS

Manager

VM

Monitor

SALSA Runtime

…

IOS Agent

Domain-U

Actors

VM

Monitor

SALSA Runtime

5. Create/

Terminate

VM

Autonomous Load Balancing

Domain-0

6.

(Dis)connect

Load

Balancers

3. Determine if

requesting VM

creation / termination

Figure 2.1. System architecture of the Cloud Operating System.

utilization. We set a higher value on k LOW than k HIGH to make VM termination

more difficult than creation.

• A VM Monitor sends a low CPU utilization event to a Node Manager only after it

detects persistent low CPU utilization since it takes some time until an IOS agent gets

some workload from other IOS agents.

2.1.3 Experiments

We conducted experiments to confirm how COS automatically scales up and finds

an appropriate VM configuration for the application. We also compared the performance

between COS and fixed VM cases.

Experimental settings The workload is a Heat Diffusion problem, a communication-

intensive workload. It simulates heat transfer in a two-dimensional grid in an iterative

fashion. At each iteration, the temperature of a single cell is computed by averaging the

temperatures of neighboring cells. We ran the problem for 300 iterations. It is developed in

14

Table 2.1. Test VM configurations for fixed VMs vs. COS.

Test Case vCPU/VM PM VM Total vCPUs Memory [MB/VM]

4 1 1 4 1024
Fixed VM 4 2 2 8 1024

4 3 3 12 1024

COS 4 dynamically determined 1024
at runtime

SALSA using actors to perform the distributed computation. Each actor is responsible for

computing a sub-block of the grid and the actors have to communicate with each other to

get the temperatures on boundary cells.

We use three physical machines and create only one VM per physical machine. Each

of the physical machines has quad core Opteron processors running at 2.27 GHz, and they

were connected via 1-Gbit Ethernet. Ubuntu Linux 12.04 LTS with Xen hypervisor version

3.4.1 was installed on all the machines. While COS dynamically changes the number of VMs

at runtime, the fixed VM cases use one, two, and three VMs respectively from the start to

the end of the Heat simulation. Table 2.1 summarizes the test VM configurations.

Results As shown in Figure 2.2, COS successfully reacted to the high CPU utilization

and created new VMs. First it started with the first VM (VM1) only, and then created the

second VM (VM2) at around 21 seconds. Once both VM1 and VM2 got highly utilized,

COS created the third VM (VM3) at around 92 seconds. Since the actors were gradually

migrated by IOS agents from VM1 to VM3, not from VM2, the CPU utilization of VM3

increased whereas the CPU utilization of VM1 decreased almost by half. COS successfully

created VMs when extra computing power was demanded. Figure 2.3 shows the throughput

of the Heat Diffusion simulation. It is clear that the throughput gets higher as the number

of VMs increases.

Figure 2.4 shows the relationship between the number of vCPUs and the execution

time. COS uses 9.002 vCPUs on average, whereas the fixed VMs cases use 4, 8, and 12

vCPUs for 1, 2, and 3 VMs, respectively. It is clear that more use of vCPUs makes the

15

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1

1.2

0 25 50 75 100 125 150

N
u

m
b

e
r
 o

f
V

M
s

C
P

U
 U

ti
li

z
a

ti
o

n

Time [sec]

Transition of VM CPU Utilization (Heat)

VM1

VM2

VM3

Number

of VMs

Figure 2.2. VM CPU utilization from Heat Diffusion problem running on the
Cloud Operating System.

0

1

2

3

4

0

1

2

3

4

5

0 25 50 75 100 125 150

N
u

m
b

e
r
 o

f
V

M
s

T
h

ro
u

g
h

p
u

t
 [

it
e

ra
ti

o
n

s/
se

c]

Time [sec]

Transition of Throughput (Heat)

Throughput

Number

of VMs

Figure 2.3. Throughput of the Heat Diffusion problem running on the Cloud
Operating System.

execution times faster. Also, the graph suggests that relationship between the number of

vCPUs and the execution time is linear. Suppose the cost per time is proportional to the

number of vCPUs, the total cost, the product of the number of vCPUs and the execution

time, is almost constant. Therefore, using 3 VMs is the best way to go for the Heat Diffusion

problem; however, COS does better than the cases of 1 VM and 2 VMs. It performs well

if we consider the fact that COS does not have any knowledge about the complexity of the

problem and the number of vCPUs is dynamically determined at runtime.

16

0

50

100

150

200

250

300

2 4 6 8 10 12 14

E

x

e

c

u

t

i

o

n

T

i

m

e

[

s

e

c

]

Number of vCPUs

Relationship between

Number of vCPUs and Execution Time

3VMs

COS

2VMs

1VM

Figure 2.4. Comparison of throughput for the Heat Diffusion problem between
fixed VMs and the Cloud Operating System.

2.1.4 Summary

In this section, we introduced a middleware framework, the Cloud Operating System,

that supports autonomous cloud computing workload elasticity and scalability based on

application-level migration. To scale a workload up, COS creates new VMs and migrates

application actors to these new VMs. To scale a workload down, COS consolidates actors

into fewer VMs and terminates idle VMs. COS only requires cloud applications to contain

migratable components and does not impose any further restrictions on workloads. Using

application-level migration, workloads can be elastic and scalable autonomously through

middleware-driven dynamic reconfigurations.

Future work includes exploring automating more fine-grained resource management

in COS by dynamically reconfiguring the number of vCPUs and the memory size of VMs

(see [59] for the potential performance impact of these reconfigurations performed manually.)

Finally, we also plan to connect mobile device applications to hybrid clouds (e.g., see [60]

) using application-level migration to gain elasticity, scalability, and efficiency, in a general-

purpose programming framework.

17

2.2 Cost-Optimal Heterogeneous Virtual Machine Scheduling over

Hybrid Clouds

2.2.1 Introduction

Growing demand for “Big Data” analytics applications requires a corresponding growth

in “big computing” resources, making hybrid clouds an increasingly attractive infrastructure.

A hybrid cloud enables users who have access to their own private cloud to scale out to

public computing resources only occasionally. Especially for massively-parallel applications,

for which the “cost-associativity” quality of the cloud computing model holds [1], we can

get results faster by paying more money for public cloud resources; however, orchestrating

distributed VM instances in hybrid clouds in a cost-efficient manner is a non-trivial task.

Amazon created the Elastic Compute Unit (ECU) as a measure of computing power

of their various VM instance types depending on the price and QoS they offer to help users

choose appropriate virtual machines. Their explanation of ECU is as follows: “We use several

benchmarks and tests to manage the consistency and predictability of the performance of an

EC2 Compute Unit. One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-

1.2 GHz 2007 Opteron or 2007 Xeon processor” [61]. ECU helps as a relative performance

measure for a wide range of workloads, but it cannot be accurate for all types of workloads.

Moreover, in the hybrid cloud model, ECU is not defined for private computing resources.

Therefore, to accurately schedule resources not only on the public cloud, but also on the

private cloud, the computational power of private computing resources must be quantified

for better hybrid cloud performance prediction. To get accurate performance predictions and

associated cost reduction over hybrid clouds, we introduce the notion of Workload-tailored

Elastic Compute Unit (WECU) as a unit of computing power for a specific type of workload

on a specific virtual or physical machine type. WECU is obtained by actually running the

target workloads on available VM instances on the target machine for a short period.

In addition to improving the performance prediction based on WECU, we also consider

application-level migration to support dynamic workload scalability. As we have shown in

18

Section 2.1, when dynamically scaling up the computation of long-running farmer-worker pro-

grams, migrating the workers from a private cloud to a public cloud is an effective approach

because it is light-weight compared to VM-level migration and is able to let the workers

continuously run without restarting [48]. Figure 2.5 illustrates the workload scalability over

a hybrid cloud.

VM

1

Actors

…

…

Scale out

VM

1

VM

2

VM

N

VM

N+1

…

VM

M

Extra VMs

Scale in

Scale up

Scale down

Public CloudPrivate Cloud

Figure 2.5. Workload scalability over a hybrid cloud.

In this section, we present the notion of WECU and propose a cost-optimal VM schedul-

ing algorithm for heterogeneous VM types based on dynamic programming. We also show

WECU’s performance predictability for a massively-parallel application written in SALSA.

2.2.2 Workload-Tailored Elastic Compute Unit

There are quite a few VM instance types available in Amazon EC2 associated with var-

ious ECUs and prices. some of the instance types are shown in Table 2.2. Amazon provides

ECUs as indicators of performance, but it may not be precise depending on applications.

To find out the actual performance difference between instance types, we did a preliminary

experiment evaluating a simple benchmark application called Trap written in SALSA on

each instance type as well as on two other nodes, A and B, in our private cloud. Trap is a

massively parallel application and computes a trapezoidal numerical integration for a given

19

function with a given interval (see Section 5 for details). The task size is defined as the

number of trapezoid.

Table 2.2. Amazon EC2 on-demand instances (as of September 2013).

instance type vCPU ECU price[USD] price/ECU
m1.small 1 1 0.06 0.06
m1.medium 1 2 0.12 0.06
m1.large 2 4 0.24 0.06
m1.xlarge 4 8 0.48 0.06
m3.xlarge 4 13 0.5 0.038
m3.2xlarge 8 26 1 0.038
c1.medium 2 5 0.145 0.029
c1.xlarge 8 20 0.58 0.029

For task sizes ranging from 100,000 to 1,600,000, we observe relative runtime perfor-

mance results in Figure 2.6. in this Figure, the base performance is defined as the runtime

for the m1.small instance and the other relative performances are divided by the m1.small’s

runtime. as the graph clearly shows, ECU does not always show the exact performance dif-

ferences for the Trap application. for example, c1.medium has five ECUs while its relative

performance is only about four, also c1.xlarge has 26 ECUs while its relative performance

is ranging from 12 to a little over 16.

These results tell us that ECUs are not very accurate in predicting the performance

of the Trap application, and thus we need to define a new performance measurement unit

called Workload-tailored Elastic Compute Unit (WECU). WECU is defined as follows:

Definition of WECU : One WECU corresponds to the throughput of a one-ECU instance

on a specific workload. General WECU values associated with arbitrary instance types pro-

cessing the same workload are defined by dividing their throughput by the base throughput.

In short, it is a relative performance unit based on the actual workload throughput. For

the Trap application and instances used in the preliminary experiment, we define the base

throughput as m1.small’s throughput, that is, 1 WECU = 2758.54 tasks/sec. All obtained

20

�

�

�

�

�

��

��

��

��

��

� ������ ������� �������

�
�
��
�
��
�
�	
�

��

�
�
�
�
�

��������	

�	
��

�	
���

��������

�����
���

��������

���������

���������

����������

�����
���

���������

Figure 2.6. Relative performance of Amazon EC2 instances and private
physical nodes (node A and node B). the performance of m1.small is 1.0.

values of WECUs are shown in Table 2.3. Note these values are computed after the perfor-

mance converges. Since we will use WECU for long-running workloads, we want to use the

throughput in steady-state conditions.

Table 2.3. ECU and WECU values for the trap application (1 WECU = 2758.54
tasks/sec).

Instance Type ECU WECU Price[USD]/WECU
m1.small 1 1.0 0.06
m1.medium 2 1.882 0.0632
m1.large 4 4.156 0.0594
m1.xlarge 8 7.940 0.0617
m3.xlarge 13 8.380 0.0610
m3.2xlarge 26 16.604 0.0615
c1.medium 5 4.070 0.0359
c1.xlarge 20 16.316 0.0366
node A N/A 4.795 N/A
node B N/A 14.223 N/A

2.2.3 VM Scheduling Algorithm

The VM scheduling algorithm consists of four steps as shown below:

21

• Step 1. Compute target throughput and set a corresponding computational power

requirement.

• Step 2. Check if the private cloud can satisfy the computational power requirement.

• Step 3. If Step 2 cannot satisfy the requirement, use extra resources in the public

cloud.

• Step 4. Assign workers to the instances allocated in Steps 2 and 3.

The details of each step are explained below in order.

Step 1: Target Throughput and Computational Requirement

We are given the following inputs:

• tdeadline: deadline to finish the tasks,

• tcurr: current time,

• tasks: total number of tasks to process,

• tasksdone: total number of completed tasks,

• λ: throughput per WECU,

• ∆curr: current throughput, and

• τ : throughput threshold for activating reconfiguration.

The target throughput ∆target is computed as follows:

∆target = (tasks− tasksdone)/(tdeadline − tcurr).

For non-terminating workloads, we assume a target throughput is given in tasks/second.

22

If |∆target−∆curr

∆target
| < τ , the algorithm does nothing and quits, otherwise it computes a required

computational power ηtarget as follows:

ηtarget = ∆target/λ. (2.1)

Note that ηtarget is in WECU units, which is defined in Section 2.2.2. We need to achieve

ηtarget with computing instances collectively allocated from the private and public clouds so

that the target throughput ∆target can be maintained.

Step 2: Private Cloud Resource Configuration

We are given the following inputs:

• Rpriv = {(type1, η1, cpu1, num1), ..., (typeN , ηN , cpuN , numN)}: N types of VM in-

stances available in the private cloud, where typei is the VM instance type, ηi is the

computational power, cpui is the number of virtual CPUs, and numi is the available

number of the i-th instance type respectively; and

• ηtarget: target computational power computed in Eq. (2.1).

Algorithm 1 outputs the following:

• Apriv : a set of instances to be allocated in the private cloud. ith element is a 4-tuple

(typei, ηi, cpui, numi),

• σpriv : total computational power provided by Apriv, and

• ηremain : remaining computational power needed to satisfy target throughput.

Algorithm 1 allocates resources giving priority to instance types in the order they appear in

Rpriv. It simply deducts available computing power from ηremain. If ηremain ≤ 0, then the

algorithm outputs Apriv and goes to Step 4 to assign workers, otherwise it proceeds to Step

3 to further allocate more instances from the public cloud.

23

1 input : Rpriv, ηtarget
output: Apriv, σpriv, ηremain

2 Apriv = ∅; σpriv = 0.0; ηremain = ηtarget; i = 1;
3 while i ≤ N and 0 < ηremain do
4 if dηremain/ηie ≤ numi then
5 num = dηremain/ηie;
6 end
7 else
8 num = numi;
9 end

10 Apriv = Apriv ∪ {(typei, ηi, cpui, num)};
11 σpriv = σpriv + num× ηi;
12 ηremain = ηremain − num× ηi;
13 i = i+ 1;

14 end
15 return Apriv, ηremain;

Algorithm 1. Private cloud resource configuration.

Step 3: Cost Optimal Public Cloud Resource Configuration

We are given the following inputs:

• Rpub = {(type1, η1, cpu1, price1), ..., (typeM , ηM , cpuM , priceM)}: M types of VM in-

stances available in the public cloud, where typei is the VM instance type, ηi is the

computational power, cpui is the number of virtual CPUs, and pricei is the hourly

price of the ith instance type respectively; and

• ηtarget: ηremain obtained in Step 2.

The minimal cost that satisfies arbitrary computational power η is given as follows:

COST (η) = min
1≤i≤M

 pricei (η ≤ ηi)

pricei + COST (η − ηi) (otherwise)
(2.2)

It compares the cost of choosing instance i out of M instance types recursively until it finds

an instance which has larger computational power than the required η. Using a dynamic

programming algorithm directly derived from Eq. (2.2), the following outputs are obtained:

24

• Apub: instances to be allocated from the public cloud,

• costpub: total cost of Apub, and

• σpub: total computational power of the instances in Apub,

where

Apub = {(type1, η1, price1, num1), ..., (typeL, ηL, priceL, numL)},

costpub =
∑

i-th instance type ∈Apub

pricei × numi,

σpub =
∑

i-th instance type ∈Apub

ηi × numi.

Our dynamic programming algorithm’s running time is O(ηM). Cost-optimality of

Eq. (2.2) can be visually confirmed by Figure 2.7. As the Figure shows, obtained resource

configurations produce cost-optimal configurations among other possible ones.

Figure 2.7. Cost-optimal configurations among other possible configurations.

Step 4: Workers Assignment

Given tasks, Apriv, σpriv, Apub and σpub from the previous steps, Algorithm 2 outputs

the following worker assignment:

25

• Wpriv: contains a set of tuples (workeri, tasksi) for instance type i, where workeri is

the number of workers and tasksi is the number of tasks to be assigned to instances of

type i.

• Wpub: contains the same information as above for the public cloud.

• tasksper worker: the number of tasks per worker.

1 input : tasks, Apriv, σpriv, Apub, σpub
output: Wpriv,Wpub, tasksper worker

2 Wpriv = ∅; Wpub = ∅;
3 foreach instance type i in Apriv do
4 tasksi = tasks× ηi

σpriv+σpub
× 1

numi
;

5 end
6 foreach instance type j in Apub do
7 tasksj = tasks× ηj

σpriv+σpub
× 1

numj
;

8 end

9 tasksper worker = min1≤i≤N,1≤j≤M{ tasksicpui×2
,
tasksj
cpuj×2

};

10 foreach instance type i in Apriv do
11 workeri = d tasksi

tasksper worker
e;

12 Wpriv = Wpriv ∪ {(workeri, tasksi)};
13 end
14 foreach instance type j in Apub do

15 workerj = d tasksj
tasksper worker

e;
16 Wpub = Wpub ∪ {(workerj, tasksj)};
17 end
18 return Wpriv,Wpub, tasksper worker;

Algorithm 2. Workers assignment.

Algorithm 2 assigns tasks in proportion to an instance type’s computational power

while keeping the number of tasks for each worker constant. By assigning tasks to workers

this way, we are able to balance the load between heterogeneous VM instances just by

migrating workers. Also, tasksper worker is determined in connection to the number of virtual

CPUs. This is because it is known that the granularity of workers has an impact on the

workload performance on a given number of processors [62]. To be in a region of high

26

performance, tasksper worker is chosen so that the number of workers is at least twice as

many as the number of virtual CPUs.

2.2.4 Experiments

We run the resource algorithm shown in Section 3.4.3 using both WECU and Amazon’s

ECU, and compare the performance predictability of both approaches.

Experimental Settings

• Workload: Trapezoidal Numerical Integration: The Trap application written in SALSA

computes an approximated value of
∫ b
a
f(x)dx. The farmer actor breaks the interval

[a, b] into n trapezoids and assigns a certain number of trapezoids to each actor pro-

gram. After all the worker actors compute the value of f for given trapezoids, the

farmer sums up all the partial trapezoid values returned from workers. Since the com-

putation of each trapezoid does not depend on others, each worker can work without

communicating with other workers.

• Hybrid Cloud Environment: We have two host machines, node A and B, as the private

cloud hosts. Node A has AMD Opteron 848 processor (4 cores) running at 2.2 GHz

and 15 Gbytes of memory. Node B has Intel Xeon CPU E31220 processor (4 cores)

running at 3.1 GHz and 6 Gbytes of memory. We dedicate node A to the name service

required by SALSA and the farmer actor while node B is used to run worker actors.

As the public cloud, we use Amazon EC2 with VM instance types presented in Table

2.2. Also, in the following experiments, information shown in Table 2.3 is used as

computational power in ECU and WECU units.

• ECU-based Approach: The resource configuration algorithm presented in Section 3.4.3

is also applicable for ECU, if ECU is used as a unit of computational power η. There-

fore, we use ECU values depicted in Table 2.3 and compare the same algorithm with

27

WECU and ECU units respectively. Note that for nodes A and B, 4 and 14 are used

as computational power η for the ECU-based approach.

• Parameters: The Trap application is tested in the hybrid cloud with the following

conditions:

– tdeadline: 60 seconds,

– Tasks (the number of trapezoids): {3× 106, 6× 106, 9× 106, 12× 106}, and

– Over-provisioning rate [%]: {0, 2, 4, 6, 8, 10}.

Over-provisioning is typically used to account for the lack of accuracy in predicting

workload performance. For example, if the over-provisioning rate is 10%, then the

over-provisioned deadline will be 54 seconds and the algorithm takes this value as the

new deadline tdeadline.

Results The runtime results for (a) ECU-based and (b) WECU-based approaches are

shown in Figure 2.8. From Figure 2.8, we can clearly tell that the WECU-based resource

configuration better predicts the actual performance compared to the ECU-based approach.

The average differences between initial predicted runtime and the actual runtime are: 4.59%

for WECU and 29.25% for ECU. Even though initial worker distribution overhead is not

accounted, WECU-based approach succeeded to meet the deadline for over-provisioning

rates larger than 6%.

We noticed our dynamic programming based algorithm is in favor of choosing {m1.small,

c1.medium, c1.xlarge} over {m1.medium, m1.large, m1.xlarge, m3.xlarge, m3.2xlarge}

instance types. This happens because, as shown in Table 2.3, most of the former group of

instance types are better in Price/WECU ratio than the latter. If a workload is memory

or I/O-intensive and m1 and m3 instance types perform better in such workloads, we expect

that this will be reflected in the WECU relative performance, and price/performance ratio

will make them favorable.

28

50

55

60

65

70

75

80

0 2 4 6 8 10

R
u

n
ti

m
e

 [
se

c]

over-provisioning [%]

#tasks=3,000,000

#tasks=6,000,000

#tasks=9,000,000

#tasks=12,000,000

overprovisioned deadline

actual deadline

50

55

60

65

70

75

80

0 2 4 6 8 10

R
u

n
ti

m
e

 [
se

c]

over-provisioning [%]

#tasks=3,000,000

#tasks=6,000,000

#tasks=9,000,000

#tasks=12,000,000

overprovisioned deadline

actual deadline

(b) WECU-provisioned Runtime

(a) ECU-provisioned Runtime

Figure 2.8. Runtime results for (a) ECU-based and (b) WECU-based resource
configurations.

2.2.5 Summary

We introduced the concept of Workload-tailored Elastic Compute Unit (WECU) as

a measure of computing resources analogous to Amazon EC2’s ECUs. We present a dy-

namic programming-based scheduling algorithm to select resources which satisfy the desired

throughput in a cost-optimal way. Using a loosely-coupled benchmark running on a hybrid

cloud environment, we confirmed WECUs have 24% better runtime prediction ability than

ECUs on average.

Through the experiments, it is suggested the ECU-based approach needs a significantly

higher over-provisioning rate to satisfy service demands compared to the one needed by the

29

WECU-based approach. This means that the ECU-based approach has a wider search space

of over-provisioning rates than the WECU-based approach does, therefore it is not easy for

the ECU-based to find the right over-provisioning rate.

Future work includes evaluating our middleware’s adaptability with real applications

that have dynamically changing workloads and also implementing a budget-constrained re-

source management algorithm. Also, our current algorithm is cost-optimal for a given com-

putational power, but it is not Pareto-optimal. We plan to modify our resource management

algorithm to produce Pareto-optimal resource configurations.

CHAPTER 3

ELASTIC MICRO-BATCH DATA PROCESSING

3.1 Introduction

The number of flight passengers is expected to reach 7.3 billion by 2034 globally, which

requires a 4.1% average growth in flight capacity in every year from 2014 on [63]. Air traffic

optimization is crucial to enhance flight capacity and also alleviate human controllers’ work-

load. Air traffic management problems are commonly formulated as integer linear program-

ming (ILP), which are known to be NP-hard [64]. However, we can still obtain approximate

solutions and use them to help control air traffic. To keep up with ever changing traffic

and continuously produce air traffic management solutions, we can solve ILP problems in a

micro-batch manner. That is, we create a single ILP problem from data observed in a certain

time window as a batch data processing job and repeatedly solve created problems as we

obtain new data.

However, since the number of flights fluctuates a lot in practice, computational demands

for air traffic optimization also change dynamically. For example, Figure 3.1 shows how the

number of commercial flights in the U.S. changed over 24 hours from 4am EST on January

18th, 2014. Once air traffic hits the peak at around 1pm, it gradually drops and eventually

reaches 200 at around 3am. To keep up with the fluctuating computing demands in a

cost-efficient way, we can dynamically allocate and deallocate VMs from Infrastructure-as-a-

Service (IaaS) cloud computing providers. The challenge is dynamically choosing the right

number of VMs that satisfies computational demands at the lowest possible cost.

Portion of this chapter previously appeared in: Shigeru Imai, Stacy Patterson, and Carlos A. Varela,
“Elastic virtual machine scheduling for continuous air traffic optimization,” in Proc. IEEE/ACM Int’l Symp.
on Cluster, Cloud and Grid Computing (CCGrid 16), 2016, pp. 183–186.

30

31

�

���

����

����

����

����

����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

	

�

�

�

�

��������	�
�������
���������������

Figure 3.1. Number of U.S. commercial flights on January 18th, 2014 (created
from data available on [65]).

To elastically allocate or deallocate VMs, we can either adaptively adjust the number

of VMs at run-time without any prior knowledge of the application or proactively predict the

number of VMs using a resource prediction model. The former includes a threshold-based

approach, as used in Amazon’s Auto Scaling [42], and reinforcement learning [43], [44]. We

take the latter approach to improve the resource utilization, cost, and latency violations.

Moreover, we use an auto-regressive time series prediction model to decide when to schedule

VMs in a speculative manner. In this chapter, we present the following:

• An elastic middleware framework to solve ILP problems created from continuously

incoming air traffic streams (Section 3.2) over IaaS clouds. The framework obtains an

approximate solution to ILP problems using a two-level optimization technique based

on Lagrangean decomposition [66].

• VM scheduling algorithms that are specifically designed to solve ILP problems gener-

ated from continuous air traffic streams (Section 3.4). We use a time series prediction

model to decide when to allocate VMs and we also use a resource prediction model to

estimate how many VMs to allocate. The resource prediction model estimates required

VM resources given the number of flight routes and target processing latency by using

linear regression.

32

• Experimental results that show our speculative VM scheduling algorithm can achieve a

similar performance to a static schedule while using 49% less VM hours for a smoothly

changing air traffic. Our algorithm is able to adapt dynamically to potentially unfore-

seen fluctuating demand with a reasonable prediction accuracy.

3.2 Air Traffic Management Problem

3.2.1 Problem Formulation

The Link Transmission Model (LTM) [67] is an air traffic flow management model that

optimizes nationwide air traffic by formulating it as an ILP problem. Cao and Sun decompose

the original LTM problem into multiple sub-problems using Lagrangean decomposition and

use MapReduce [68] to approximate the solution to large scale LTM problems in parallel [69].

Our work is inspired by their approach. We formulate a simplified version of the LTM

problem that captures the computationally intensive nature of the original LTM problem.

Figure 3.2 shows an example of the simplified air traffic management problem. A route

connects a departure airport and an arrival airport, and it consists of multiple links that

are distributed over multiple sectors. As illustrated in the example, the same sector at the

center of the grid is shared by multiple routes, therefore congestion must be controlled.

We can formalize the simplified air traffic management problem as an ILP problem as

follows:

minimize
K∑
i=1

cᵀ
i xi (3.1)

subject to
K∑
i=1

Aixi ≤ b (3.2)

0 ≤ xi ∀i ∈ [1,K], (3.3)
Ni∑
j=1

x j
i ≤ di ∀i ∈ [1, K], (3.4)

where xji ∈ Z ≥ 0, Ai ∈ {0, 1}S ,Ni , b ∈ ZS ≥ 0,

ci ∈ RNi ≥ 0, di ∈ Z ≥ 0.

33

�

�

�

�

�

�

�

�

��������	����
�����

�����

����
�����

����
��

���������

�������

�������

������	

Figure 3.2. Example of the simplified air traffic management problem.

The objective of this optimization problem is to assign an ideal number of flights to

each sector so that we can maximize the air traffic capacity while satisfying capacity of each

sector. Given constants are: the number of routes K, the number of links of the i-th route

Ni(i = 1, ..., K), and the number of sectors S. The number of flights for a route i is expressed

as a vector xi = [x1
i , x

2
i , ..., x

Ni
i]ᵀ, where xji ∈ Z ≥ 0 is the number of flights at link j of the

route i. xi(i = 1, ..., K) are the variables to be optimized subject to the following capacity

constraints:

• Sector capacity: Total number of flights in a sector s must be less than or equal to

bs ∈ Z ≥ 0 (s = 1, ..., S) (Inequality (3.2)).

• Route capacity: Total number of flights on a route i must be less than or equal to

di ∈ Z ≥ 0 (i = 1, ..., K) (Inequality (3.4)).

The objective function
∑K

i=1 cᵀ
i xi is defined with vectors ci = [c1

i , c
2
i , ..., c

Ni
i]ᵀ(i = 1, ..., K),

where cji ∈ R ≥ 0 determines the degree of preference of assigning flights on link j of route

i. We can set higher values for less congested sectors and lower values for highly congested

sectors. The sector capacity constraint is defined by Inequality (3.2) using S ×Ni matrices

34

Ai(i = 1, ..., K) and a vector b = [b1, b2, ..., bS], where bs ∈ Z ≥ 0. For a route i, the mapping

of links to sectors naturally dictates the construction of Ai; each element asj takes the value

of 1 if link j is on sector s, otherwise 0. Each element of b determines the sector capacity of

a corresponding sector.

A solution to this problem captures the two important properties of the original LTM

problem that affect the computational workload. First, adding a new route increases the

number of variables in proportion to the number of links on the route. Second, each Ai

matrix is extremely sparse, which significantly affects the difficulty of satisfying constraints

because there are very few number of variables in each constraint.

3.2.2 Lagrangean Decomposition

ILP is NP-hard. Thus, it is common to use algorithms that find an approximate so-

lution in a reasonable amount of time. Lagrangean decomposition is a popular technique

to obtain an approximate solution to ILP problems, and it was used for LTM in [69]. La-

grangean decomposition offers a way to split a larger linear integer problem into multiple

smaller sub-problems by relaxing complicating constraints. For our air traffic management

problem described in Section 3.2.1, the complicating constraint is the sector capacity con-

straint (Inequality (3.2)), which prohibits us from separating the original problem into K

sub-problems with Inequality (3.3) and (3.4). By constructing a Lagrangean relaxation of

the original problem, we can bring the complicating constraints to the objective function as

a penalty term as follows:

maximize
K∑
i=1

cᵀ
ixi − λᵀ

(K∑
i=1

Aixi − b
)

(3.5)

subject to 0 ≤ xi,

Ni∑
j=1

xji ≤ di ∀i,

35

where λ ∈ RS ≥ 0 is a vector of Lagrange multipliers. Now, we can decompose the problem

(3.5) into a smaller sub-problems, one for each route i:

maximize
(
cᵀ
i − λᵀAi

)
xi (3.6)

subject to 0 ≤ xi,

Ni∑
j=1

xji ≤ di.

Next, we define the master dual problem of the Lagrangean (3.5), which is responsible for

updating λ:

minimize g(λ) =
K∑
i=1

(cᵀ
i − λᵀAi)x

∗
i + λᵀb (3.7)

subject to 0 ≤ λ,

where x∗i is the optimal solution to the sub-problem (3.6) for a route i. To solve λ for the

dual problem (3.7), we use the gradient method:

∂g

∂λ
= b−

K∑
i=1

Aix
∗
i (3.8)

λ(t+ 1) = λ(t)− α ∂g
∂λ

, (3.9)

where α is a small positive step-size.

As shown in Algorithm 3, we iteratively solve the K sub ILP problems to find optimal

xi(i = 1, ..., K) for a specific λ (Line 8) and update λ for the master dual problem (Line

17). We keep track of the minimum value of objective (minObj), and if it is not improved

by more than δ% for I iterations, we go out from the while loop and return the final results.

36

1 input : Ai, ci, di(i = 1, ..., K),b,λinit, δ, I
output: xi(i = 1, ..., K),minObj

2 t← 0;
3 λ(t)← λinit;
4 minObj ← Double.MAX VALUE ;
5 while Iterations minObj not improved more than δ% < I do
6 // Solve K sub-problems

7 for i = 1 to K do
8 xi ← solveILP(Ai, ci, di,λ(t));
9 end

10 // Update master objective

11 obj ← compObj(A1, ..., AK ,b, c1, ..., cK ,x1, ...,xK ,λ);
12 if obj < minObj then
13 minObj ← obj;
14 end
15 // Update λ for the next iteration

16 α = 1
t
;

17 λ(t+ 1)← λ(t)− α · gradient(Ai,b,xi);
18 t← t+ 1;

19 end
20 return xi(i = 1, ..., K),minObj;

Algorithm 3. Two-level ILP optimization.

3.3 Elastic Air Traffic Management Middleware

3.3.1 Background

System Interaction We assume that the user of the middleware is a human air traffic

controller who uses output of our middleware for air traffic control activity. We also assume

that some flight information providers (e.g., FlightAware [70]) or airplanes directly send

the latest flight status information to the middleware (see Figure 3.3). Since air traffic

management is time critical, the middleware tries to schedule VMs so that the optimization

result can be used by the user in a timely manner. Hence, the user can configure latency to

request how quickly the application should return the result.

Cloud Deployment The middleware is designed to work on an IaaS cloud. The IaaS cloud

can be private, public, or hybrid; however, the scheduling algorithm presented in Section 3.4

37

is optimized for public IaaS clouds due to its billing cycle aware scheduling. The billing cycle

is the unit of monetary charge (e.g., 1 hour for Amazon EC2 [71] as of November 2016). The

scheduler only terminates VMs just before their billing cycle so that the application can use

the VMs’ computing power until the last minute.

3.3.2 Application Implementation

We use Spark 1.5.1 [72], a general cluster computing engine, to implement Algorithm 3.

Spark’s high-level abstractions for distributed programming and in-memory data processing

features are suitable for the iterative ILP problem solving process. Spark applications run on

a cluster consisting of a master node and multiple worker nodes. In Algorithm 3, executors

running on the worker nodes execute Line 7 to solve K sub-problems in parallel, and the

rest of the code is executed on the master node. While Spark allows us to cache parameters

Ai, ci, di for sub-problems on each worker node, the master needs to broadcast the updated

value of λ to the workers in each iteration.

When executors solve the sub-problems, we use lp solve [73] since it is open-source and

thread-safe. Since Spark runs multiple threads in one executor process in parallel, thread

safety is a required property for the ILP problem solver.

3.3.3 Middleware Architecture

Figure 3.3 illustrates the architecture of the proposed middleware framework. We

describe how the middleware works, step by step, as follows:

• Step 1: The Controller periodically pulls (e.g., every 5 minutes) flight status informa-

tion in the queue such as airplane positions and flights’ departure and arrivals.

• Step 2: The Controller creates an ILP problem instance from the obtained flight

status information and then pushes it to the VM Scheduler with requested processing

latency (e.g., 4 minutes).

38

• Step 3: The VM Scheduler uses a time series prediction model and a resource predic-

tion model to estimate the required number of VMs to finish the optimization within

the requested processing latency.

• Step 4: The VM Scheduler allocates or deallocates VMs accordingly by calling cloud

APIs such as Apache Libcloud [17].

• Step 5: The Controller requests the Application Launcher to run the ILP application.

Even though flight status information flows into the middleware continuously, the mid-

dleware processes the information collected within a sliding time window. We can see this

as a micro-batch processing model just as used in Spark Streaming [72].

3.4 Virtual Machine Scheduling

First, we confirm how the ILP optimization application works on actual VMs through

a preliminary experiment in Section 3.4.1. Next, we describe a resource prediction model

created using linear regression in Section 3.4.2. Finally, in Section 3.4.3, based on observa-

tions from the preliminary experiment and the resource prediction model, we present two

VM scheduling algorithms: baseScheduler and specScheduler .

3.4.1 Performance Characterization of ILP Optimization

To understand how the Spark application works, we conducted a preliminary experi-

ment with the following settings:

• Number of links per route: generated from a Gaussian distribution (average = 19,

variance = 9).

• Number of sectors: 1024 made of a 32 by 32 grid just as shown in Figure 3.2.

• Convergence criterion: the value of master dual objective in Eq. (3.7) does not improve

more than 1% for 1000 iterations (i.e., δ = 1, I = 1000 in Algorithm 3).

39

�

����������

����������	
��
����	�

������������

���

�����	
��

�		�
���
��
���������

������
�	����

�������������������

�� ��

���������

���������	�

����

�

�		�
���
��

��������

��������	�
��
������
����������

�������
�

�����������������

���

���

�		�
���
��

� ��!��

����
�����

�"����#���������������	�

���	��

��

�

��
���
������

� �����
��

$�
���������

���������	�

����

Figure 3.3. Architecture of the elastic air traffic management middleware
framework.

• Spark setting: 1 executor per core.

We tested 50 application runs with randomly selected VM instances and number of routes

from the following options:

• VM instances for Spark worker nodes: {c4.large, c4.xlarge, c4.2xlarge} instance types

available from Amazon EC2 (see Table 3.1). Up to five instances can be created for

each instance type.

• Number of routes: {128, 256, 512, 1024}

40

Table 3.1. Amazon EC2 VM instance types used in experiments (information
as of November 2015).

Name vCPU cores Cost [USD/hr] Instance limits

c4.large 2 0.11 5
c4.xlarge 4 0.22 5
c4.2xlarge 8 0.441 5

Figure 3.4 presents the relationship between the total number of cores used by the

VMs and the application execution time. First, we observe that the performance variance

is relatively small (at most 7%) regardless of VM configurations as long as we use the same

number of cores for the same number of routes. This is due to the fact that we assign one

thread per core, and therefore, we end up using the same number of threads even for different

VM configurations as long as they have the same number of cores. Second, as we can clearly

see from the graph, the application execution time does not improve significantly from around

18 to 20 cores for all numbers of routes. This behavior is consistent with a performance

analysis of a K-means Spark application reported in [74], in which the performance converges

at around 15 threads. They concluded that multi-threaded computation overhead (i.e.,

work time inflation [75]) and load imbalance caused the scalability bottleneck. Since our

application and K-means have a similar synchronization pattern (i.e., both are iterative and

synchronize all workers between every iteration), this analysis applies to our case as well.

These observations lead to the following decisions for the resource allocation method design:

• The unit of resource (de)allocation is the number of cores. Since the performance and

cost per core is equal among {c4.large, c4.xlarge, c4.2xlarge}, we do not distinguish one

VM instance type from another.

• We set the upper limit for the number of cores that we allocate to match the applica-

tion’s inherent scalability limitations.

41

��

���

����

� � �� �� �� �� �� ��

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

��������	�
����

���	
����

���	
�����

���	
�����

���	
������

Figure 3.4. Characteristics of the ILP problem execution time.

3.4.2 Resource Prediction Model

The VM Scheduler introduced in Section 3.3.3 needs a model to determine how many

resources it should allocate to achieve the target processing latency. We use linear regression

with a non-linear transform to model the relationship between the two input parameters:

processing latency l and number of routes r, and the output: number of cores c. We sampled

50 application runs using the same experimental settings as the preliminary experiment in

Section 3.4.1, but this time with uniformly random numbers of routes between 100 and

1200. Subsequently, we tested five non-linear transforms to determine which one best fits

the sampled training data as shown in Table 3.2. As the transformation becomes more

complex, correlation between the model and the training data improves. Based on this

result, we have identified Φ-2:2 to be the most correlated with the data. We thus use this

model in our algorithms. The number of cores can be obtained as follows:

f(l, r) = wᵀ · Φ-2:2(l, r), (3.10)

where w = [w1, w2, ..., w11] is a weight vector acquired from linear regression of the number

of cores given the latency and the number of routes.

42

Table 3.2. Non-linear transforms used for linear regression.

Name Transformation vector Correlation

Φ-1 [1/r, 1/l, 1]ᵀ 0.615
Φ2 [1, r, l, r2, rl, l2]ᵀ 0.765
Φ-2 [1/r2, 1/rl, 1/l2, 1/r, 1/l, 1]ᵀ 0.870

Φ-2:1 [1/r2, 1/rl, 1/l2, 1/r, 1/l, 1, r, l]ᵀ 0.873
Φ-2:2 [1/r2, 1/rl, 1/l2, 1/r, 1/l, 1, r, l, r2, rl, l2]ᵀ 0.890

3.4.3 Elastic Scheduling Algorithms

The VM Scheduler periodically calls one of the scheduling algorithms to keep the

processing latency consistent. We describe two scheduling algorithms for the VM Scheduler

that use the model presented in Section 3.4.2. Key notations used in the algorithms are

summarized in Table 3.3.

Table 3.3. Key notations used in scheduling algorithms.

Name Description
lreq Requested processing latency.
rt Number of routes to process at time t.
tup VM startup time.

f(l, r) Resource prediction model that predicts the number
of cores to satisfy latency l when processing r routes.

Vact Set of VMs that are actively used by the application.
Vidle Set of VMs to be removed at the end of next billing

cycle.
Vspec Set of speculative VMs to be allocated.
V Set of currently allocated VMs. V = Vact ∪ Vidle.

tbc(v) Next billing cycle time of a VM v ∈ V .
c(v) Number of cores of a VM v ∈ V .

3.4.3.1 Baseline Scheduling

The baseline scheduling algorithm (baseScheduler) is shown in Algorithm 4. This

algorithm responds to increasing computational demand by creating new VMs, while at

the same time, tries to take advantage of existing VMs even when they are not needed to

achieve required processing latency. First, we compare the available number of cores call

with required cores creq estimated from the resource prediction model f (Line 2-4). If there

43

1 input : lreq, rt, tup, V
output: Vact, Vidle

2 creq ← df(lreq, rt)e;
3 call ←

∑
v∈V c(v);

4 if creq ≤ call then
5 // There are enough cores

6 Sort v ∈ V in descending order of tbc(v);
7 Vact ← selectVMs(creq, V);
8 Vidle ← V − Vact;
9 Vextra = {v | v ∈ Vidle, t+ lreq < tbc(v)};

10 if Vextra 6= ∅ then
11 Vact ← Vact ∪ Vextra;
12 Vidle ← Vidle − Vextra;

13 end

14 else
15 // Not enough cores, allocate VMs

16 calloc ← df(lreq − tup, rt)e − call;
17 Vact ← V ∪ allocVMs(calloc);
18 Vidle ← ∅;
19 end
20 return Vact, Vidle;

Algorithm 4. Baseline VM scheduling algorithm (baseScheduler).

are enough cores, we sort V in descending order of next billing cycles (the VM with the

latest billing cycle comes first) (Line 6). Then, we let selectVMs select at least creq worth

of VMs from the sorted V and put them to Vact and the rest of VMs to Vidle (Lines 7 and

8). Further, if there still remains VMs in Vidle such that their billing cycles come after the

time that we expect the application to finish, we utilize those VMs Vextra too (Line 10-12).

At this point, VMs in Vidle are expected to end their billing cycles before the application

finishes, and therefore they will be deallocated. If there are not enough cores to satisfy the

requested latency, we have to allocate new VMs to satisfy the requested latency. Since newly

allocated VMs take tup time before they become fully operational, we can only start running

the application after tup time has passed. Therefore, we set a tighter deadline lreq − tup and

estimate the number of cores to allocate calloc again (Line 16). Then, we call the allocVMs

sub-routine to allocate at least calloc worth of VMs and update Vact and Vidle accordingly.

44

3.4.3.2 Speculative Scheduling

The speculative scheduling algorithm (specScheduler) is shown in Algorithm 5. This

algorithm takes advantage of future computational demand prediction and tries to allocate

VMs before they are actually needed. We predict the number of routes for time t+ 1 using

a slope computed from rt and rt−1 as follows.

rt+1 =
rt − rt−1

t− (t− 1)
+ rt = 2rt − rt−1. (3.11)

This prediction model is equivalent to an auto-regressive model (i.e., AR(2)) just as used

in [46], [47].

1 input : lreq, rt, rt−1, tup, V
output: Vact, Vidle, Vspec

2 // Obtain a baseline configuration first

3 (Vact, Vidle)← baseScheduler(lreq, rt, tup, V);
4 call ←

∑
v∈V c(v);

5 // Speculative VM allocation

6 r̂t+1 ← predictNumRoutes(rt, rt−1);
7 ĉreq ← df(lreq, r̂t+1)e;
8 Vspec ← ∅;
9 if call < ĉreq then

10 // Schedule to finish launching Vspec VMs before the next time step

11 Vspec ← scheduleAllocVMs(ĉreq − call);

12 end
13 return Vact, Vidle, Vspec;

Algorithm 5. Speculative VM scheduling algorithm (specScheduler).

The specScheduler first obtains a baseline configuration using the baseScheduler and

computes all of available number of cores in call (Line 3-4). Next, specScheduler predicts

the number of routes for the next step in r̂t+1 by using the prediction model of Eq. (3.11)

(Line 6). Using r̂t+1 and the resource prediction model f , we estimate a speculative required

cores ĉreq. Finally, if we need more cores at next time step than what we currently have

(call < ĉreq), then we schedule to launch VMs that are worth ĉreq − call cores just before the

next time step (Lines 9 and 11).

45

3.4.3.3 VM Allocation Policy

Given the number of cores, we allocate VMs from a limited pool of VMs when executing

allocVMs (Line 17, Algorithm 4) and scheduleAllocVMs (Line 11, Algorithm 5). When

selecting VMs, we try to allocate a VM type with smaller number of cores. If a VM type

reaches its instance creation limit, then we try to allocate VM types with bigger number of

cores until at least the requested number of cores is allocated. In case of Amazon EC2, we

try to allocate c4.large instances first, and then c4.xlarge followed by c4.2xlarge. The reason

that we give priority to smaller instances is because they have finer core granularity. That

is, we would have a higher chance of allocating exact number of cores so that we can avoid

over provisioning of VMs.

3.5 Evaluation

We first introduce simulation based experimental settings in Section 3.5.1. Next, we

evaluate the proposed algorithms’ elastic behavior in Section 3.5.2. Then, we compare the

proposed algorithms’ performance with static VM scheduling and threshold-based auto scal-

ing in Sections 3.5.3 and 3.5.4 respectively.

3.5.1 Experimental Settings

The experiments are simulation-based. We develop a simulator that executes the pro-

posed VM scheduling algorithms. Using the generated schedules by the simulator, we man-

ually allocate and deallocate VMs on Amazon EC2 cloud and run the Spark application to

evaluate used VM hours, cost, and latency violations based on actual execution time. We

use two 3-hour route datasets for testing: the first one is called Nationwide that we create

from the 24-hour real nationwide flights shown in Figure 3.1, and the second one is called

Dallas that we create based on a simulated flights over Dallas/Fort Worth area [76]. Both

have almost the same peak number of routes, about 1200, but the patterns of fluctuation

are different. While Nationwide has a smooth curve, Dallas has steep spikes, as shown in

46

Figure 3.7.

We use the following test parameters for evaluation:

• Scheduling interval: 5 minutes (36 scheduling problems over 3 hours).

• Requested processing latency (lreq) : 4 minutes.

• VM startup time (tup): 90 seconds.

• VM instances for Spark’s worker nodes: {c4.large, c4.xlarge, c4.2xlarge} (see Table 3.1

for details). Up to five instances can be created for each instance type.

• Billing cycle: 1 hour (Amazon EC2’s default).

3.5.2 Elastic Behavior Confirmation

3.5.2.1 Nationwide Dataset

Results for baseScheduler and specScheduler for the Nationwide dataset are shown

in Figure 3.5(a)-(d). From Figure 3.5(a), we see that the baseline scheduler allocates VMs,

initially for 8 cores at 1900 seconds and then for 12 cores at 3900 seconds. Looking at

Figure 3.5(b), we notice that there are two “dips” in requested latency at the same time as the

scheduler allocates new VMs. This lower latency corresponds to the value of lreq− tup (= 150

seconds) at Line 15 of Algorithm 4. To account for the VM startup time, we intentionally set

a tighter latency. Therefore, the scheduling algorithm has to allocate relatively large number

of cores. Since these cores are more than enough to satisfy the regular required latency lreq

(= 240 seconds), there are periods (2100 to 2700 seconds, 3900 seconds to the end) when

execution time stays lower than required, that is, resources are over-provisioned during these

periods. This is a limitation of the reactive approach. There are four latency violations

occurring at 1800, 3300, 3600, and 3900 seconds respectively. At these times, the prediction

model underestimated the number of cores needed to satisfy the requested latency. The

average prediction error of execution time for the four violations is 12%. This result suggests

that the accuracy of resource prediction is limited and we may need to over-provision VMs

47

intentionally. The total cost for the base scheduler is $1.72 and latency violations are 4 out

of 36.

From Figure 3.5(c), we can visually confirm that the speculative scheduler gradually

allocates smaller numbers of cores, unlike the baseline scheduler which abruptly allocates

larger numbers of cores. This is a direct effect of the speculative VM allocation. In fact,

all the allocated VMs are launched by scheduleAllocVMs at Line 10 in Algorithm 5. Since

there are already enough cores by the time baseScheduler at Line 2 tries to schedule, it does

not need to create any new VMs. As a result, there are no latency drops in Figure 3.5(d).

The total cost for the speculative scheduler is $1.01 and latency violations are 2 out 36. The

cost is a 41% improvement compared to the baseline scheduler.

�

�

��

��

��

��

�

���

����

����

����

� ���� ���� ���� 	���
��� �����

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

���������	

��
���

�����

�

��

���

���

���

���

���

� ���� ���� ���� 	���
��� �����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���������	

���
�����

�������

����
����

����

��������	
����
��
	��������
	������	���	��

�����	��	�
	� ��
	��������	�	��
����
��	�����	���	��

�

�

��

��

��

��

�

���

����

����

����

� ���� ���� ���� 	���
��� �����

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

���������	

��
���

�����

�

��

���

���

���

���

���

� ���� ���� ���� 	���
��� �����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���������	

���
�����

�������

����
����

����

��������	
����
��
	��������
	�����	����
��	��

�����	��	�
	� ��
	��������	�	��
����
��	����	����
��	��

Figure 3.5. Experimental results for the Nationwide dataset.

Figure 3.6 shows a VM allocation sequence scheduled by the speculative scheduler

created for the Nationwide dataset. We can see that five c4.large instances (ID = 0 to 4) are

allocated by 2910 seconds, and then a c4.xlarge instance (ID = 5) is allocated at 3210 seconds.

Interestingly, at 9900 seconds, the scheduler chooses to keep the c4.xlarge instance instead of

the c4.large (ID = 4) instance even though the c4.large can also satisfy the requested processing

latency. This is because the c4.xlarge will have the billing cycle later than the c4.large does;

however, in a truly continuous optimization scenario, it may be less critical because wasted

48

VM hours will be negligible compared with the application execution time.

��
��
��
��

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��	
��
�

��	
��
�

��	
��
� ��	
��
�

��	�
��
� ��	�
��
�

��	
��
�

��	�
��
�

��	
��
�

��	
��
�

�� �������	
�	

�
�
 ��
��

Figure 3.6. VM allocation sequence for the speculative scheduling algorithm
created from the Nationwide dataset.

3.5.2.2 Dallas Dataset

Results for baseScheduler and specScheduler for the Dallas dataset are shown in

Figure 3.7(a)-(d). From Figure 3.7(a), we can confirm that the baseline scheduler allocates

VMs for 6 cores at 1200 seconds and then for 12 cores at 7800 seconds. In Figure 3.7(c),

the speculative scheduler follows changes of the routes smoothly for the first stage of the

sequence; however, at 7500 seconds, it fails to predict the number of routes correctly and

ends up allocating less VMs than actually needed at 7800 seconds. It allocates two more VMs

at 7800 seconds and that is the reason why we see a requested latency drop at 7500 seconds

of Figure 3.7(d). The current slope-based time series predictor cannot keep up with sudden

route changes. Apart from the time series prediction failure of the speculative scheduler,

both schedulers are able to adapt to the spike and allocate/deallocate VMs successfully. For

the base scheduler, the total cost is $0.83 and latency violations are 2 out of 36. For the

speculative scheduler, they are $1.38 and 1 out 36 respectively.

3.5.3 Comparison with Static Scheduling

Elastic scheduling can adapt to unforeseen fluctuating demand whereas static schedul-

ing cannot. We compare static scheduling against our proposed elastic algorithms to confirm

49

�

�

��

��

��

��

�

���

����

� ���� ���� ���� 	���
��� �����

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

���������	

��
���

�����

�

��

���

���

���

���

���

� ���� ���� ���� 	���
��� �����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���������	

���
�����

�������

����
����

����

�

�

��

��

��

��

�

���

����

� ���� ���� ���� 	���
��� �����

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

���������	

��
���

�����

�

��

���

���

���

���

���

� ���� ���� ���� 	���
��� �����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���������	

���
�����

�������

����
����

����

��������	
����
��
	��������
	������	���	��

�����	��	�
	� ��
	��������	�	��
����
��	�����	���	��

��������	
����
��
	��������
	�����	����
��	��

�����	��	�
	� ��
	��������	�	��
����
��	����	����
��	��

Figure 3.7. Experimental results for the Dallas dataset.

the effectiveness of our approach’s adaptivity. Experimental settings are the same as Sec-

tion 3.5.2, and we use both Nationwide and Dallas datasets. For the static scheduling, we test

VM configurations with cores = {2, 4, 8, 10, 12, 14, 16} for Nationwide and {2, 6, 8, 10, 12} for

Dallas. Comparison of VM hours, cost, and the percentage of latency violations are shown in

Tables 3.4 and 3.5, respectively, for the Nationwide and Dallas datasets. Since static sched-

ules do not waste any VM hours at all (i.e., they do not visit a situation as in Figure 3.6), we

compute the cost for our elastic schedulers in proportion to the execution time for fairness.

In the tables, VM hours means the net number of cores used over 3 hours of the experiments.

The percentage of latency violations is computed out of 36 scheduling problems over 3 hours.

For the Nationwide dataset, the speculative scheduler successfully improves over the

baseline scheduler in terms of latency violations by 50% with 41% less VM hours and cost.

The performance of the static schedule with 12 cores is comparable to the speculative sched-

uler (0% vs. 5.56% violations). When comparing the two, the speculative scheduler achieves

a similar performance with 49% less VM hours and cost. For the Dallas dataset, the base

scheduler improves latency violations over the closest static allocation approach (6 cores) by

66% despite it uses 17% less VM hours. When comparing to the static schedule with 8 cores,

the speculative scheduler slightly over-provisions due to inaccuracy of both time series and

50

Table 3.5. VM hours, cost, and latency violations for elastic and static
scheduling algorithms (Dallas dataset).

Policy Cores
VM hours Cost Violations
[core·hour] [USD] [%]

Static

2 6 0.33 63.89
4 12 0.66 44.44
8 24 1.32 19.44
10 30 1.65 13.89
12 36 1.98 0
14 42 2.31 0
16 48 2.64 0

Auto Scaling 2 to 8 15.96 0.88 25
Elastic (base.) 2 to 22 31.33 1.72 11.11
Elastic (spec.) 2 to 14 18.33 1.01 5.56

Policy Cores
VM hours Cost Violations
[core·hour] [USD] [%]

Static

2 6 0.33 61.11
6 18 0.99 16.67
8 24 1.32 2.78
10 30 1.65 2.78
12 36 1.98 0

Elastic (base.) 2 to 14 15 0.83 5.56
Elastic (spec.) 2 to 18 25.15 1.38 2.78

resource predictions. That is, it spends 5% more VM hours and cost, but equally performs

as the static scheduler with 8 cores in terms latency violations.

While our elastic scheduling policy exhibits a small percentage of latency violations,

we note that any static scheduler, other than a very highly provisioned one, will not be able

to guarantee zero latency violations. For any static VM allocation, there is a possibility that

it will not be sufficient for some level of demand. Our elastic schedulers, on the other hand,

successfully adapt to unforeseen computational demand changes and scale VMs accordingly

with reasonably low cost.

51

3.5.4 Comparison with Auto Scaling

Since threshold-based auto scaling is commonly used as an application-agnostic scaling

technique, we test it against our application aware approach. We use the same experimental

settings as Section 3.5.2. We implement the following rules that are compatible to Amazon

Auto Scaling [42]:

• VM instance type: c4.large.

• VM allocation: minimum 1, maximum 5 instances.

• Rule to scale up: if the average CPU utilization of allocated VMs is consistently above

70% for 2 minutes, add one VM.

• Rule to scale down: if the average CPU utilization of allocated VMs is consistently

below 30% for 2 minutes, reduce one VM.

• Cooldown period: once scaling decision is made, no new scaling activity is performed

for 300 seconds.

• VM termination: the instance that is closest to the next billing cycle is chosen to

terminate.

Figure 3.8 shows average CPU utilization and the number of VMs over the 3 hour

experiment period. The auto scaler successfully increases VMs up to 4, and then decreases

them to 1. The results are summarized in Table 3.4. Since the threshold-based auto scaler

is not aware of the application performance requirement (i.e., 240 seconds latency) at all,

it under-provisions the VMs and ends up producing relatively many latency violations com-

pared to our elastic schedulers.

52

�

�

�

�

�

�

�

���

���

���

��	

�

� ���� ���� ���� �	��
��� ����� �
�
�
�
�
��
�
	�

�
��

�
�
��
�
��
�
�

�
�
�
��
��
��
��
��
��

���������	

��
����������� �������������� !�"���#�$

Figure 3.8. CPU utilization and VM allocation by a threshold-based auto
scaling.

3.6 Summary

In this chapter, we presented an elastic middleware framework that is specifically de-

signed to solve ILP problems generated from continuous air traffic streams over an IaaS cloud.

We proposed a speculative VM scheduling algorithm with time series and resource predic-

tion models. Experiments show that our speculative VM scheduling algorithm can achieve

a similar performance to a static schedule while using 49% less VM hours for a smoothly

changing air traffic. However, for a sharply changing air traffic, our speculative VM schedul-

ing algorithm costs slightly more VM hours to achieve the same performance. Our algorithm

is able to adapt dynamically to potentially unforeseen fluctuating demand with a reasonable

prediction accuracy. We plan to improve model prediction accuracy especially for time series

using a more complex model (e.g., ARMA).

We have several potential directions for future work. First, we would like to apply

our middleware to other application areas since the concept of solving large scale ILP prob-

lems created from continuous data stream is widely applicable. Candidate application areas

include: public transportation routing [77], investment portfolio optimization [78], and mar-

keting budget optimization [79], [80]. Second, we plan to explore other modeling techniques

for predicting resource allocation. Finally, we plan to extend our framework to support other

optimization policies such as budget constrained and deadline constrained policies.

CHAPTER 4

SUSTAINABLE ELASTIC STREAM DATA PROCESSING

4.1 Introduction

The need for real-time stream data processing is ever increasing as we are facing an

unprecedented amount of data generated at high velocity. Upon the arrival of a stream

event, we want to process it as quickly as possible to timely react to anomalies such as

aircraft airspeed sensor failure [4] or unusually high CPU usage in data centers [5]. Traffic

management [49], [81] and sensor data processing from Internet-of-Things (IoT) devices [82]–

[84] are also common real-time stream processing applications. To process these fast data

streams in a scalable and reliable manner, a new generation of stream processing systems

has emerged: systems such as Storm [6], [85], Flink [9], [86], and Spark Streaming [11],

[72] have been actively used and developed in recent years. Cloud computing offers on-

demand elasticity to these systems through its pay-per-use cost model for VMs. Using cloud

computing, elastic stream data processing autonomously allocates or deallocates VMs on-

demand to match fluctuating application workload [87]. It helps save cost while maintaining

required QoS objectives.

Figure 4.1 shows a common real-time stream data processing environment. This stream

processing system environment consists of a data producer, a message broker (e.g., Kafka),

a stream processing system, and a data store. The data producer sends events at the input

data rate of λ(t) Mbytes/sec at time t, and they are appended to message queues in the

Portions of this chapter previously appeared as: Shigeru Imai, Stacy Patterson, and Carlos A. Varela,
“Maximum sustainable throughput prediction for data stream processing over public clouds” in Proc.
IEEE/ACM Int’l Symp. on Cluster, Cloud and Grid Computing (CCGrid 17), 2017, pp. 504–513.

Portions of this chapter are to appear in: Shigeru Imai, Stacy Patterson, and Carlos A. Varela,
“Uncertainty-aware elastic virtual machine scheduling for stream processing systems” in Proc. IEEE/ACM
Int’l Symp. on Cluster, Cloud and Grid Computing (CCGrid 18), 2018.

53

54

message broker. The stream processing system pulls data out of the message broker as

quickly as possible at the throughput of µ(t) Mbytes/sec using m(t) VMs. After the stream

processing system processes events, it optionally stores results in the data store (e.g., file

system or database). The message broker acts as a buffer between the data producer and

the stream processing system, enabling them to work asynchronously.

Message
Broker

(e.g., Kafka)

Data
Store

Input data rate:

Processing

throughput:

Stream

Processing

System

Number of VMs:

Data
Producer

(e.g., Storm, Flink, …)

Discrete time:

Figure 4.1. Common real-time stream processing environment.

One concern in the stream processing environment shown in Figure 4.1 is that when the

input data rate λ(t) is consistently higher than the processing throughput µ(t), backlogged-

data in the message broker accumulates, eventually making the whole system inoperable.

Figure 4.2 shows an example time series of increasing input data rates and data processing

throughput measured in the stream processing environment in Figure 4.1. The data pro-

cessing throughput µ(t) starts diverging from the increasing input data rate λ(t) around 140

seconds when the input data rate is about 2.5 Mbytes/sec. This means that the stream

processing system cannot keep up with the input data rate, and the incoming events starts

accumulating in the message broker. If this condition persists, data processing is unsustain-

able as the accumulated events will eventually exceed the capacity of available storage in the

message broker. On the other hand, if the input date rate is less than 2.5 Mbytes/sec, data

processing is sustainable.

For sustainable data processing, it is critical to control the processing throughput µ(t)

55

�

�

�

�

�

�

�

� �� ��� ��� ��� ��� ��� ��� ���

�
�
��
�
�
�
�
�
�	

�

�

��
��
��
��

���������	
��

������������� �������	�����
�����	������

����

������
����

�

�
������
����

�

Figure 4.2. Example time series of input data rates and processing throughput.

through m(t) so that µ(t) can always match the the input data rate λ(t). To help estimate

how many VMs we should allocate to achieve sustainable data processing, we define the

Maximum Sustainable Throughput as follows.

Definition of MST : Maximum sustainable throughput (MST) is the maximum throughput

that a stream processing application can process indefinitely with a given number of VMs.

Due to the application’s performance variability and measurement noise, observed MST is a

random variable affected by the number of VMs. Thus, we assume it follows a probability

distribution Pr(τ |m), where τ is an MST value for a number of VMs m. As long as the

system’s MST is greater than the data input rate λ(t), data is immediately consumed and

the queue size in the message broker remains short. We call this condition throughput-QoS

and express it by the following relationship:

∀t : λ(t) ≤ τ(m(t)), (4.1)

where τ(m(t)) is a true MST value at time t that follows the probability distribution

Pr(τ |m(t)). If this condition is true for all t, data processing is sustainable. However,

56

since this probability distribution is unknown, we cannot directly predict the exact value of

τ(m(t)). Thus, we estimate the true MST value using an estimator function τ̂(m) and try to

find a sequence of numbers of VMs m(t) (t = 1, 2, ...) that satisfies the following condition:

∀t : λ(t) ≤ τ̂(m(t)). (4.2)

QoS objectives used by recent elastic stream data processing systems include keeping

resource utilization within certain range [42], [88], guaranteeing latency [7], [36], [89], and

minimizing latency spikes [35]. One thing in common among these works is that these metrics

are concerned about stream application performance only, but not about sustainability of

the entire stream processing environment including message brokers. This thesis focus on the

sustainability of data stream processing by ensuring the throughput-QoS condition in (4.1).

More specifically, we tackle the following research questions.

Predicting MST : To satisfy the condition shown in (4.2), we need a prediction model

τ̂(m) to estimate the MST for a given number of VMs. Due to the complex nature of

distributed data processing, some applications scale linearly while some shows scale non-

linearly, as we will show later in Section 5.4. To model such complex behavior, it is not

feasible to model application performance analytically. Thus, we collect performance metrics

sample from actual application runs and train prediction models using regression. Research

questions we pose in MST prediction are as follows:

1. How can we model non-linear scaling behavior of stream data processing systems?

2. How to save cost and time to collect training samples while achieving high prediction

accuracy?

VM Scheduling : One way to classify elastic VM scheduling techniques is by whether

they are reactive or proactive. Reactive scheduling allocates or deallocates VMs in response

to some resource usage metric changes (e.g., CPU, memory, network), such as is done in

57

AWS AutoScaling [42]. On the other hand, proactive scheduling makes scaling decisions

using predictions of application performance and future workload, to scale-up the number of

VMs before performance degrades or to scale-down the number of VMs to reduce cost while

maintaining throughput-QoS. Proactive scheduling approaches that incorporate measures of

application performance and workloads have the potential to achieve better throughput-QoS

at lower cost, when compared to reactive approaches. However, their cost-effectiveness and

QoS depend on the accuracy of the performance and workload prediction mechanisms. We

have the following research questions for proactive VM scheduling:

1. Can a VM scheduling algorithm be aware of inaccuracy of prediction models and

still produce robust and cost-effective VM configurations for sustainable data stream

processing?

2. How does online learning and workload prediction abilities improve throughput-QoS

satisfaction?

For the rest of the chapter, we show technical background of the elastic sustainable

stream data processing in Section 4.2, and show our elastic stream data processing framework

including MST sampling method in Section 4.3.

4.2 Background of Elastic Stream Processing

We review representative distributed stream processing systems in Section 4.2.1 and

recent research works of elastic stream processing in Section 4.2.2.

4.2.1 Distributed Stream Processing Systems

4.2.1.1 Comparison of Distributed Stream Processing Systems

Table 4.1 shows a summary of four representative distributed data stream processing

systems from the Apache foundation: Storm [6], [85], Samza [10], [90], Flink [9], [86], and

Spark Streaming [11], [91].

58

Table 4.1. Comparison of representative distributed stream processing systems
(as of 2018).

Storm Samza Flink
Spark

Streaming

Version 1.2.1 0.14 1.4.1 2.2.1

Processing
stream

stream stream micro-batch
Model (batch) (batch) (batch)

Fault-tolerant tracking
checkpointing checkpointing checkpointing

Mechanism ack messages

Processing at least once / at least exactly exactly
Guarantee at most once once once once

Kafka
yes

yes
yes yes

Support (required)

Supported YARN (unofficial) /
YARN YARN

YARN /
Resource Manager Mesos Mesos

Run-time yes
no

yes yes
Reconfiguration (no state recovery) (not elastic) (elastic)

Unlike Storm only supports pure stream processing, Samza, Flink, and Spark Stream-

ing support both batch and stream (or micro-batch for Spark Streaming) processing in a

single processing engine. Spark Streaming’s micro batching generates high throughput with

a price of high latency.

Different fault-tolerant mechanisms lead to different processing guarantees. In Storm,

each source processing unit (i.e., spout) keeps tracks of acknowledgment messages from its

succeeding processing units (i.e., bolts) for all the events the spout transmitted. The spout

retains an event until it receives the acknowledgment. When the wait for acknowledgment

times out, the spout replays the corresponding event. In case an event is just fully pro-

cessed and timed-out simultaneously, the spout can replay the same event twice. Because of

this mechanism, Storm processing guarantee remains at-least-once. When the acknowledg-

ment mechanism is turned off, Storm becomes failure-prone and only supports at-most-once.

Samza is designed to work with Kafka as the message broker and its fault-tolerance is also

based on Kafka. Samza’s StreamTasks pull data from Kafka in parallel while each task keeps

track of a current offset in a Kafka partition. To record where to resume reading in case

of failure, Samza periodically checkpoints the current offset for each task. When an failure

59

occurs, it is possible that Samza replays events that are already processed since the last

checkpoint. Therefore Samza’s processing guarantee is also at-least-once. The Storm and

Samza’s at least once processing guarantees can become problematic for applications that

are not idempotent. For example, when failures occur for a typical WordCount application,

resulting counts may be incorrect due to duplicated events. Flink and Spark Streaming offer

exactly-once processing guarantees, which is a more desirable property compared to at-least-

once. Flink periodically takes a global snapshot as a set of all task states in a distributed

manner similar to Chandy-Lamport algorithm [92]. In case of failure, it loads checkpointed

states to the tasks and replays events from the time when the checkpoint is taken. This

recovers task states at the time of failure, and thus the tasks can resume processing without

making duplicate outputs. Spark Streaming takes a similar approach by checkpointing states

for the Spark’s resilient distributed datasets (RDDs).

All systems can ingest events from Kafka [93] and especially Samza is tightly coupled

with it. YARN [94] and Mesos [95] are general resource management frameworks for shared

clusters supported by many data processing frameworks. Except that Samza requires YARN

as a resource management framework, all the other frameworks have their own default stan-

dalone cluster manager. Unlike YARN is supported by all four frameworks (support for

Storm is unofficial), Mesos is only supported by Storm and Spark Streaming.

The levels of run-time reconfiguration support largely vary depending on each frame-

work. Storm exposes reconfiguration functionalities without any state recovery. Since

Samza’s configuration is completely immutable once a job starts, it prevents any dynamic

run-time reconfiguration [96]. Flink supports a run-time reconfiguration feature with state

recovery to change the parallelism, but elastic scaling (dynamic addition or removal of com-

putational resources) is not supported. Spark Streaming has the most complete dynamic

scaling feature among the four frameworks. If the task scheduling is delayed more than a

pre-configured threshold period, it automatically requests more resources from the resource

manager and scales up gracefully with load rebalancing and state recovery. It was initially

60

supported in v1.6.1 with some issues and has been fixed since v2.0.0 [97].

4.2.1.2 Scaling Stream Processing Applications

In typical stream processing systems such as Storm, the user writes an application in

the form of topology connected by multiple processing units. As shown in Figure 4.3, the

topology can be scaled up with arbitrary parallelism of threads when they are deployed on

the cluster. As illustrated in Figure 4.3, one way to determine the parallelism of a topology

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

Logical topology

Actual deployment

m = 3

m = 5

Numbers of processing
units () = 3

6 threads on 6 vCPUs

9 threads on 10 vCPUs

(vCPUs per machine () = 2,

Threads per vCPU () = 1)

Parallelism () = 3

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

: Processing unit

: Thread

Parallelism () = 2

Figure 4.3. Examples of scaling an application topology with three processing
units (u = 3) to three and five machines (m = 3 and 5), respectively. Each

machine has two vCPUs (α = 2) and one vCPU is assigned per thread (β = 1).

is as follows. Given the following parameters,

• u: Number of processing units

• m: Number of virtual machines

• α: Number of vCPUs per virtual machine

• β: Number of threads per vCPU

61

the ratio between the number of vCPUs and threads can be expressed with parallelism p

(i.e., the number of threads per processing unit) as follows:

#vCPUs : #threads = 1 : β = mα : up. (4.3)

Solving (4.3) for p, we get p = αβm
u

. Since parallelism p must be integer ≥ 1, finally we

obtain p as follows:

p = max
(

1,
⌊αβm

u

⌋)
. (4.4)

This scaling method tries to assign β threads per vCPU. As shown in Figure 4.3, given

u = 3, α = 2, β = 1, when we deploy the topology to m = 3 machines, 6 threads are assigned

on 6 vCPUs. In case of m = 5 machines, 9 threads are assigned on 10 vCPUs with one

vCPU left unused.

4.2.2 Elastic Stream Processing Systems

In this section, we survey existing elastic stream processing systems. First, we show

what metrics are used in these systems, and then compare their approaches from several

aspects.

4.2.2.1 Performance Metrics

Various metrics have been used to make scaling decisions for elastic stream processing

systems. We describe representative metrics: latency, throughput, traffic load, and resource

utilization.

Latency Given a logical topology composed of multiple processing units as shown in Sec-

tion 4.2.1.2, latency is the difference between the time when the topology receives a message

from data source and the time when the topology finishes processing the message. Queue-

ing theory [98], [99] is a mathematical theory about queuing systems (e.g., customers wait

in queue before receiving service). Given a distribution of inter-arrival of messages and a

62

distribution of service time, it can estimate the average queue length and average wait time

after the system reaches its steady state. Kendall’s notation is conveniently used to describe

queuing models using three components A/S/c, where A is a probability distribution for

inter-arrival time, S is a probability distribution of service time, and c is the number of

servers. It has been used to model the processing latency of distributed data stream pro-

cessing applications [7], [36]. DRS models each processing unit as an M/M/c system (i.e.,

inter-arrival: Poisson, service: exponential, number of servers: c) [7]. Potentially due to its

inability to express pipe-lining effects between processing units, when the application is net-

work intensive, estimated latency is significantly inaccurate (up to 10x different). Lohrmann

et al. models each processing unit as a GI/G/1 system (i.e., inter-arrival: unknown, service:

unknown, number of servers: 1) [36]. It uses Kingman’s formula [100] that is known to

approximate the wait time accurately when the system is in heavy traffic. Since the model

assumes the service rate is always greater than the message arrival rate, when the processing

units cannot keep up with fast message arrival, their latency model becomes unusable.

Li et al. claim that queueing theory does not work for distributed stream process-

ing systems since 1) assumptions required by queueing theory may not hold in complex

distributed stream processing systems and 2) the behavior of multi-point to multi-point

queueing network used in distributed stream processing systems is still unsolved in queuing

theory [89]. Instead, they proposed a topology-aware latency prediction model trained with

support vector regression and reported that the average prediction accuracy of 83.7%.

Throughput Throughput is a metric to quantify how many messages a stream processing

system can process per unit time. ElasticStream [34] estimates maximum throughput for a

given number of VMs using a linear model. Gedik et al. monitor throughput and improve

it through a control algorithm [101].

CPU Utilization AWS AutoScaling [42] is a general-purpose auto-scaling service for Ama-

zon EC2 cloud. It offers configurable automated scaling policies based on resource utilization

63

metrics. Their Target Tracking Scaling Policies allow the user to specify a target resource

utilization (e.g., 80% CPU utilization) and AutoScaling automatically adds or removes VMs

to maintain the target utilization. Esc monitors CPU utilization for all computing nodes

and detects an overloaded condition if all the nodes have CPU utilization greater than some

threshold [88]. FUGU also uses upper/lower CPU utilization threshold values to trigger

scale-up/down operations [35].

Other Resource Contention Metrics T-Storm monitors all the traffic between pro-

cessing units and use it to minimize inter-node traffic when assigning processing units to

computing nodes [102]. Gedik et al. compute congestion index as a metric to measure

how busy communication channels between processing units are [101]. It is computed as

a fraction of time when a send call is blocked because the receiver’s message queue is full.

Stela also detects congested conditions for a processing unit if the incoming data rate to the

processing unit is greater than the outgoing throughput [103]. Spark Streaming’s dynamic

allocation monitors the duration for backlogged tasks [72].

4.2.2.2 Summary of Elastic Stream Processing Systems

A summary of recent elastic stream processing systems is shown in Figure 4.2. They

are listed in the chronological order.

It is clear that model-free approaches are based on resource contention metrics such as

CPU utilization and traffic congestion. They are all reactive and do not offer any guaran-

tee on application performance. Model-based approaches are based on several performance

metrics: resource utilization (AWS AutoScaling [42]), latency (FUGU [35], Nephele [36],

DRS [7]), and throughput (ElasticStream [34], Imai et al. [37], [49]). AWS AutoScaling [42]

recently started to support a model-based scaling service in their Target Tracking Scaling

which automatically estimates the required number of VMs to satisfy pre-configured re-

source utilization. However, the details of their model remain undisclosed. Latency-aware

approaches [7], [35], [36] are all reactive and try to maintain application latency consis-

64

Table 4.2. Summary of recent elastic stream processing systems.

Author (System) Year Performance Metric Model Proactive/Reactive

AWS AutoScaling [42]
2010 resource utilization model-free reactive

(Step Scaling)
Ishii and Suzumura

2011 throughput model-based
proactive

(ElasticStream) [34] (1-step lookahead)
Satzger et al. (Esc) [88] 2011 CPU utilization model-free reactive
Heinze et al. (FUGU) [35] 2014 latency model-based reactive
Gedik et al. [101] 2014 congestion, throughput model-free reactive
Xu et al. (T-Storm) [102] 2014 inter-node traffic model-based reactive
Lohrmann et al. (Nephele) [36] 2015 latency model-based reactive
Fu et al. (DRS) [7] 2015 latency model-based reactive
Xu et al. (Stela) [103] 2016 congestion model-based reactive
Spark Streaming [97] 2016 backlogged duration model-free reactive

Imai et al. [49] 2016 throughput model-based
proactive
(1-step lookahead)

AWS AutoScaling [42]
2017 resource utilization model-based reactive

(Target Tracking)

Imai et al. [37] 2018
throughput with

model-based
proactive

uncertainty estimation (N -step lookahead)

tent. Since they do not concern the sustainability of stream data processing, our sustainable

stream processing approach can be complementary to their approaches. It is evident that

proactive scheduling has not been explored well in elastic stream processing systems. Elas-

ticStream [34] presented 1-step lookahead proactive scheduling with a linear throughput

prediction model, which was evaluated up to 4 VMs. In this thesis, we explore the sustain-

ability of elastic data stream processing while achieving larger scalability (up to 128 VMs).

We present non-linear throughput prediction models in Chapter 5 and VM scheduling with

multi-step lookahead proactive scheduling in Chapter 6.

4.3 A Framework for Sustainable Elastic Stream Data Processing

4.3.1 Maximum Sustainable Throughput

As we have defined in Section 4.1, MST is a metric to quantify the maximum processing

throughput for the stream processing system. In this section, we show how we measure the

true MST of the stream processing system for a given number of VMs. In the common stream

processing environment in Figure 4.1, when there is no backlog in the message broker, the

65

processing throughput µ(t) never exceeds the input data rate λ(t) since the stream processing

system cannot process data unless they are provided by the data producer. To obtain the true

performance of the target stream processing system, we need to ensure that the condition

λ(t) ≥ µ(t) always holds so that the data is always available to process by the stream

processing system. However, the data producer or the message broker can be a bottleneck

and hinder the stream processing system from processing the data at its maximum speed.

To avoid this issue, we pre-load enough data to the message broker as shown in Figure 4.4,

and effectively simulate the condition λ(t) ≥ µ(t).

Message

Broker
(e.g., Kafka)

Data

Store

Processing

throughput:

Stream

Processing

System

Number of VMs:

(e.g., Storm, Flink, …)

Preloaded

Data

Figure 4.4. Maximum sustainable throughput measurement environment.

Figure 4.5 shows an example of throughput transition over time for a stream appli-

cation that processes web access logs (i.e., Unique Visitor in Section 5.4), observed in the

environment shown in Figure 4.4. In this setting, the stream processing system pulls data

from the message broker as quickly as possible. The throughput gradually grows until 100

seconds and then converges. After the convergence, we start sampling the throughput, and

that is the MST we measure. In this example, MST is around 42 Mbytes/sec. To detect

convergence of the throughput, we use the following K out of N method: keep monitoring

the latest N samples and if K samples are within ±δ% from the previous samples, we deter-

mine that the throughput is converged. As long as enough data is pre-loaded in the message

broker , the stream processing system is able to process the data indefinitely up to the rate

of MST.

66

�

�

��

��

��

��

��

��

��

��

��

� �� ��� ��� ��� ��� ��� ��� ���

�
�
��
�
�
�
�
�
�	

�

�

��
��
��
��

���������	
��

����������	
���
��

���������� ��������

Figure 4.5. Convergence of throughput for a web access log processing stream
application.

4.3.2 Sustainable Elastic Stream Data Processing Framework

Figure 4.6 shows the architecture of the proposed sustainable elastic stream data pro-

cessing framework, which runs on a cloud computing environment. To satisfy the throughput-

QoS in (4.1), the VM scheduler reconfigures the application and scales up or down VMs to

match the input data rate. Reconfiguration operations are implemented in the stream pro-

cessing framework using application-specific mechanisms, for example, the rebalance API

in Apache Storm. The MST prediction model is trained with performance sample metrics

obtained from the application monitor. We train the model offline as we describe in Chap-

ter 5 as well as online. The VM scheduler makes scaling decisions with a fixed time interval

using a MST prediction model and a workload prediction model. The workload predication

model obtains workload information (i.e., input data rates) from the workload monitor, and

updates itself to predict future workloads. The MST model is used to predict the number of

VMs that will be needed to process the forecasted workload. Since it takes tens of seconds

to minutes to launch a VM, predicting future workloads and proactively allocating VMs to

cover the predicted workloads can be effective in achieving a high QoS satisfaction rate.

67

��

������	�

�� �� �

����������

	
�

��

�
������������

����������	

��	����

������

��
��
��
���������

�
�
���
�

�������

��	����

������

���

�����	
���

����

����
����

�����	
����

����

������

���������

���������

����

�

�

�

�

�

�

�

�

�

���	�������

���

��
������

Figure 4.6. Proposed sustainable elastic stream data processing framework.

4.4 Summary

In this chapter, we described the background of elastic stream processing and intro-

duced a framework for sustainable elastic stream data processing using maximum sustainable

throughput (MST). Based on this framework, we show how we train MST prediction models

in Chapter 5 and VM scheduling techniques in Chapter 6.

CHAPTER 5

MAXIMUM SUSTAINABLE THROUGHPUT PREDICTION

5.1 Introduction

To realize a MST-based elastic stream processing in a cost efficient manner, we need an

MST prediction model for a given stream application and number of VMs. However, most

recent elastic stream processing studies primarily focus on guaranteeing latency [7], [35],

[36], [89]. ElasticStream [34] is the only elastic streaming system that estimates maximum

throughput. It uses a model that is linear in the number of VMs, which is not realistic for

all applications, as we show in this chapter.

Due to the complex nature of distributed data processing, it is not always feasible to

model application performance analytically, without any observations of application perfor-

mance. Recent works have used supervised learning to model the performance of distributed

batch processing applications [31], [104], [105]. These works collect performance metric

samples from actual application runs and train prediction models using regression. Among

them, our work was inspired by Ernest [104], which models job completion time for Apache

Spark’s batch processing as a polynomial of the input data size and number of machines. It

uses training samples obtained from a few machines to predict the performance for a larger

number of machines. We take a similar approach to Ernest to predict MST values for stream

processing applications. While Ernest uses a single prediction model, we note that there are

cases where a single model cannot be trained to work well for multiple stream processing

Portions of this chapter previously appeared as: Shigeru Imai, Stacy Patterson, and Carlos A. Varela,
“Maximum sustainable throughput prediction for data stream processing over public clouds” in Proc.
IEEE/ACM Int’l Symp. on Cluster, Cloud and Grid Computing (CCGrid 17), 2017, pp. 504–513.

Portions of this chapter have been submitted to: Shigeru Imai, Stacy Patterson, and Carlos A. Varela,
“Maximum sustainable throughput prediction for large-scale data streaming systems” in IEEE Transactions
on Cloud Computing.

68

69

applications.

In this chapter, we propose a cost-effective framework to predict MST values for stream

processing applications with various scalability characteristics. Since it may be difficult to

find one prediction model that works well for all of the applications, we first train several

models using linear regression. We then select the best-fitting model for the target applica-

tion through the evaluation of extra MST samples. To save cost and time to collect MST

samples while achieving high prediction accuracy, we statistically determine the most effec-

tive set of VMs within a budget. For evaluation, we use Intel’s Storm benchmarks [106]

running on Amazon EC2 cloud. Using up to 128 VMs, experiments show that the models

trained by our framework accurately predict MST.

The rest of the chapter is organized as follows. In Section 5.2, we present related

work on performance models used in elastic data processing. Section 5.3 presents our MST

prediction framework. Section 5.4 shows the evaluation of our models’ prediction accuracy,

and Section 5.5 discusses the results of experiments. Finally, we conclude the chapter in

Section 5.6.

5.2 Related Work

There have been a number of research projects on predicting job completion time

for batch processing. There are prediction models specifically designed for MapReduce.

AROMA [31] takes a purely data-driven approach, in which it combines clustering of re-

source usage profiles and regression with Hadoop MapReduce-specific variables. ARIA [107]

shows an analytically-designed job completion time model based on the general map-reduce

programming framework [68], Ernest [104] models job completion time for Spark’s batch

processing based on computation and communication topology. Ernest represents job com-

pletion time as a polynomial of the number of machines and the size of input data. Compared

to AROMA and ARIA, the model used in Ernest only requires target scaling factors (i.e.,

input data size and number of machines), and therefore it is more widely applicable. Our

70

approach is similar to Ernest as we use the number of machines as the only variable in

our models. However, Ernest assumes a single model, whereas our framework uses multiple

models and selects the model that is expected to give the least prediction error for each test

application. This helps us predict performance for both linearly and non-linearly scaling

applications, as we show later in this paper.

To safely scale up a cluster to process fluctuating workload, it is important to know

the maximum processing capacity of the cluster. Metrics similar to MST has been used for

web service applications [108], [109], but maximum throughput has received less attention

compared to latency in stream data processing. To the best of our knowledge, Elastic-

Stream [34] is the only elastic stream processing system that tries to maintain the cluster’s

maximum throughput to handle fluctuating input data rates through automated VM alloca-

tion. It uses a linear model to predict maximum throughput; however, there are applications

for which maximum throughput is not linearly scalable as we show in Section 5.4. Unlike

ElasticStream, we model MST for both linearly and non-linearly scalable applications.

5.3 MST Prediction Framework

In this section, we propose an MST prediction framework that is designed with the

following considerations.

1. Application as a Black Box: We see stream applications as a black box so that our

framework is generally applicable to a wide range of stream processing frameworks.

2. Default Task Scheduler: We use a default task scheduler for the stream processing

system and do not control task scheduling.

3. Homogeneous VM Type: We only use a single VM type, namely m4.large on

Amazon EC2. If different stream processing tasks have different resource usage re-

quirements, there may be room for performance improvement by optimizing the task

scheduling of these tasks with heterogeneous VM types (e.g., maximizing resource uti-

71

lization or minimizing inter-machine communication). However, since we choose to use

a default task scheduler and do not aim for performance optimization, homogeneous

VM types are sufficient.

4. Saving Time and Cost for Training: We limit the maximum number of VMs used

to collect training samples to save time and cost.

In the following sub-sections, we show the details of the proposed framework. We

first explain linear regression in Section 5.3.1, give an overview in Section 5.3.2, and de-

scribe the the following building blocks of the framework in order: MST prediction models

(Section 5.3.3), VM subset selection (Section 5.3.4), and model training and selection (Sec-

tion 5.3.5).

5.3.1 Linear Regression

We use linear regression [110] as the method to model the relationship between MST

(dependent variable: y) and the number of VMs m (independent variable: x). Given a

training dataset Dtrain = {(x(1), y(1)), ..., (x(n), y(n))}, linear regression looks for the optimal

weight vector w in a prediction model h(x) = wTx that minimizes the following mean square

error:

E(h) =
1

n

n∑
i=1

(h(x(i))− y(i))2. (5.1)

By taking the gradient of Eq. (5.1), we can analytically obtain the optimal w. Training is

the process to obtain the optimal w for the prediction model h(x) given the training dataset

Dtrain, whereas testing is to evaluate the trained model on a new test dataset.

5.3.2 Framework Overview

Figure 5.1 shows an overview of the proposed framework, which consists of two phases

as follows.

72

Phase 1 In this phase, we empirically determine the most effective set of VMs to obtain

training samples. First, we collect MST samples from representative benchmark applications

in terms of resource usage patterns. Next, we enumerate subsets of a candidate training VMs

set Vtrain to create various training sets. We train the models using linear regression with

each training set and select the best VM subset S∗ with the lowest test error. We do this

process once offline.

Phase 2 In this phase, we train a new test application that the user wants to predict the

MST values. We collect training MST samples only for the VM subset S∗ determined from

Phase 1. After training the models with the collected samples, we obtain extra validation

samples that are not included in S∗ and select the model with lowest validation error. We

run this process per test application.

Phase 1: Training VM subset selection
(do this once offline)

Phase 2: Model training & selection
(do this per test application)

Model
1

A

B C

MST samples for
representative

benchmarks

D

New application
under test

Trained

Model

Train

Models

Model
1

Model
2

Obtain

Validation

Samples

Best VM subset:

(e.g.,)
Select

Model

Obtain

Training

Samples

Select

Training VM

Subset

Evaluate all subsets in

where

Model
2

Figure 5.1. Overview of the MST prediction framework.

5.3.3 MST Prediction Models

We design two MST prediction models based on the stream processing environment we

have shown in Section 4.1. We assume that a combination of the following factors determines

the MST for a given number of VMs m.

73

1. Parallel processing gain: Performance improves as m increases.

2. Input/output distribution overhead: Performance decays linearly as m increases due to

event transmissions from Kafka to the m worker nodes and also due to result trans-

missions from the m worker nodes to the data store.

3. Inter-worker communication overhead: Performance decays quadratically as m in-

creases due to the m(m− 1) communication paths between m worker nodes.

Based on these factors, we create the following two models.

Model 1 : As shown in Eq. (5.2), This model predicts MST as a function of the number

of VMs m. It is defined as the inverse of event processing time, which is represented as

a polynomial of the number of VMs m. The terms have the following meanings: serial

processing time (w0), parallel processing time (w1), input/output distribution time (w2),

and inter-worker communication time (w3). Note that all the weights are restricted to be

non-negative (i.e., wi ≥ 0, i = 0, ..., 3).

f1(m) =
1

Time(m)
=

1

w0 + w1 · 1
m

+ w2 ·m+ w3 ·m2
. (5.2)

This model was inspired by Ernest [104], which models job completion time for Spark’s batch

processing jobs by considering computation and communication topology. Ernest represents

job completion time as a polynomial of the number of machines and the size of input data.

We take the inverse of processing time to model throughput.

Depending on the values of w2 and w3, there are cases where f1 has a peak value at

certain VMs m = m∗. On the other hand, if w2 = w3 = 0, f1 monotonically increases

and converges to 1/w0 as m goes infinity. If there is a peak, we can have multiple different

VM counts to obtain a certain value of MST. Since it is not reasonable to choose the larger

VM counts when the smaller one can achieve the same MST, we can effectively see that the

predicted MST flattens out after its peak. Taking into this “peak effect” account, we define

74

the final form of Model 1 as shown in Eq. (5.3):

τ̂1(m) =


f1(m) (m∗ does not exist),

f1(m) (m∗ exists and m ≤ m∗),

f1(m∗) (m∗ exists and m > m∗).

(5.3)

If Model 1 has its peak value at m∗, it has a constant value of f1(m∗) after the peak. For

more detailed analysis on when f1 has its peak, see Appendix A.

Model 2 : This model is a simple polynomial equation as shown in Eq. (5.4). The terms

have the following meanings: base throughput (w0), parallel processing gain (w1), inter-

worker communication overhead (w2). All the weights are restricted to non-negative (i.e.,

wi ≥ 0, i = 0, 1, 2), but we add a minus sign for w2 to account for negative impact of the

inter-worker communication.

f2(m) = w0 + w1 ·m− w2 ·m2. (5.4)

To find when f2 gets to its peak, we take the derivative of f2 in Eq. (5.4):

∂f2

∂m
= w1 − 2w2 ·m. (5.5)

Now we find when the slope (5.5) is zero:

w1 − 2w2 ·m = 0, (5.6)

m∗ = m =
w1

2w2

. (5.7)

Since f2 is a quadratic function and concave downward (i.e., −w2 < 0), if w2 6= 0, f2 has the

75

peak value of f2(m∗) as follows:

f2(m∗) = w0 + w1 ·
(w1

2w2

)
− w2 ·

(w1

2w2

)2
. (5.8)

Similar to Model 1, we define Model 2 as shown in Eq. (5.9):

τ̂2(m) =


f2(m) (w2 = 0),

f2(m) (w2 6= 0, and m ≤ m∗),

f2(m∗) (w2 6= 0 and m > m∗).

(5.9)

5.3.4 Phase 1: VM Subset Selection

In this phase, we statistically determine the most effective subset of VM counts for

training in terms of prediction error by exhaustive search. We first describe a method to

select such subset and then show the results of selected VM subsets.

5.3.4.1 VM Subset Selection Method

In Phase 1, we perform the following steps to find the best VM subset.

Step 1. Collecting MST Samples First, we run a set of benchmarks B = {b1, b2, ...}

on each VM count in V = {m1,m2, ...,Mmax} for K times per application. V contains the

numbers of VM instances up to Mmax, for which the user needs to predict the MST (e.g.,

Mmax = 128). We collect MST samples using the MST measurement method in Section 4.3.1.

The k-th MST sample for application bi with m VMs is denoted by τ (k)(bi;m).

Step 2. Select the Best VM Subset Let S be a subset of V used to train MST

prediction Models in T = {τ̂1, τ̂2, ...}. Our goal in this step is to find the best subset S∗

which gives the lowest average prediction error over all benchmarks and models. To collect

training samples at a low cost, we limit the maximum VM counts that we can have in S

and also constraint the number of elements in S. Let Vtrain = {m ∈ V | m ≤ Mtrain} be the

76

candidate set of training VM counts containing up to Mtrain, we create a collection of VM

count subsets in C as follows:

C = {S ⊆ P (Vtrain) | e1 ≤ |S| ≤ e2}, (5.10)

where P (Vtrain) is a power set of Vtrain, and e1 and e2 are the minimum and maximum number

of elements in S, respectively. For each training dataset corresponding to S ∈ C, we create

trained models τ̂j(S, bi;m) for all τ̂j ∈ T and bi ∈ B. Using samples not used for training

(i.e., samples obtained for VM counts in V − S), we compute the Root Mean Square Error

(RMSE) for each S ∈ C over all applications and models as shown in Equations (5.11)-(5.12).

Finally, we pick the best subset S∗ which gives the lowest RMSE as shown in Eq. (5.13).

SSE (S) =
∑
bi∈B

∑
τ̂j∈T

K∑
k=1

∑
ml∈V−S

(
τ (k)(bi;ml)− τ̂j(S, bi;ml)

)2

(5.11)

S∗ = argmin
S∈C

RMSE (S) (5.12)

= argmin
S∈C

√
SSE (S)

|B| · |T | ·K · |V − S|
. (5.13)

5.3.4.2 VM Subset Selection Results

We perform experiments for both Steps 1 and 2 to select the best S∗ as follows.

Experimental Settings for Step 1 We run the following three simple resource bench-

marks with Apache Storm version 0.10.1 [85] on Amazon EC2.

• Word Count: CPU intensive, typical word count for text inputs.

• SOL (i.e., Speed-Of-Light): Network intensive, received events are transferred to the

next processing units immediately without any processing.

• Rolling Sort: Memory intensive, received events are accumulated in a ring buffer and

are sorted every 60 seconds.

77

We choose these three benchmarks since they have representative orthogonal resource us-

age patterns (i.e., CPU, network, and memory intensive), and thus, the training samples

obtained from these benchmarks can be generalizable to other applications. We collected

MST samples as described in Section 4.3.1. We pre-load data in Kafka and let Storm pull

the data as quickly as possible. After we started a benchmark, we waited until throughput

converged or until 90 seconds had passed. Subsequently, we monitored traffic going from

Kafka to Storm slave nodes for 20 seconds and computed the throughput as MST. For traffic

monitoring, we modified tcpdump [111] to enable monitoring network traffic between nodes.

Kafka offers various metrics including outgoing throughput through the Java Management

Extensions interface; however, since it only provides one-minute moving average values and

takes longer to converge, we decided to monitor raw network traffic using tcpdump. After

the sampling, we shutdown the benchmark and waited for 10 seconds for the next round

of sampling. We repeated this process 6 times (i.e., K = 6) for all three simple resource

benchmarks with the following VM counts up to Mmax = 128 m4.large VMs.

V = {1, 2, 3, ..., 7, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128}. (5.14)

Experiment Settings for Step 2 We applied the VM subset selection method to the

collected MST samples with the following configurations:

• Models: Models 1 and 2.

• Constraints on the number of elements in S: e1 = 3, e2 = 5.

• Maximum number of VMs to include in the training data set: Mtrain ∈ {5, 6, 7, 8, 12, 16, 24, 32}.

We could increase Mtrain up to 128 VMs and potentially achieve good prediction results;

however, this would incur high time and cost penalties. Therefore, we limited Mtrain to 32

VMs (= 25% of 128 VMs).

78

Selected VM Subsets Results Table 5.1 shows the best VM subset S∗ and prediction

error in the RMSE for each Mtrain. We get a reasonably low error of 0.08, considering the fact

that the range of MST values is [0, 1] after normalization. Since enumerated subsets created

from a higher Mtrain contains all the elements of the ones created from a lower Mtrain, errors

monotonically decrease as we increase Mtrain. For the evaluation of Phase 2, we assume

that the user have enough budget to run up to 24 VMs, and we choose the best subset

S∗ = {3, 4, 6, 8, 24} when Mtrain = 24 or 32.

Figure 5.2 shows prediction results with S∗. Model 1 fits better than Model 2 for

Word Count, whereas Model 2 fits better than Model 1 for Rolling Sort. For SOL, both

models fit equally well. These results show that a single model is not sufficient to capture

the performance of all applications. Therefore, we need to choose a better-fitting model for

each application from Models 1 and 2.

Table 5.1. Best VM subsets S∗ and prediction errors in RMSE for variable
maximum VM counts (Mtrain ∈ 5, ..., 32).

Mtrain Best subset: S∗ RMSE
5 {2, 4, 5} 0.2864
6 {2, 4, 5} 0.2864
7 {2, 4, 5, 7} 0.1394
8 {2, 4, 5, 7} 0.1394
12 {2, 4, 5, 7} 0.1394
16 {6, 8, 16} 0.1263
24 {3, 4, 6, 8, 24} 0.0813
32 {3, 4, 6, 8, 24} 0.0813

5.3.5 Phase 2: Model Training & Selection

In Phase 2, we first take a new test application from the user, which is subject to

performance prediction. We obtain training MST samples only for a selected subset S∗ from

Phase 1, and we train both Models 1 and 2 using the the same set of training samples.

Followed by the model training, we compare trained Models 1 and 2 using some extra

validation samples to estimate which model is more accurate. Then, we select the model

79

(a) Word Count (b) Speed-Of-Light
(SOL)

(c) Rolling Sort

M
S

T
 [

M
b

y
te

s
/s

e
c
]

Number of VMs

0

2

4

6

8

10

12

0 16 32 48 64 80 96 112 128
0

200

400

600

800

0 16 32 48 64 80 96 112128

0

10

20

30

40

50

60

0 16 32 48 64 80 96 112 128

Model 1

Model 2

Actual Measurements

Figure 5.2. MST prediction results using the best VMs subset:
S∗ = {3, 4, 6, 8, 24}. X-axis: number of VMs. Y-axis: MST [Mbytes/sec].

with the lower validation error as the final output of Phase 2.

Validation Data Points Selection In Figure 5.2(a) and Figure 5.2(c), we can see the

prediction results beyond the VMs subset S∗ largely vary between Models 1 and 2. Both

models’ prediction results are very close up to m = 32, but they start to diverge after that.

Thus, we collect extra validation MST samples outside S∗ to decide which model to choose.

We look at VM counts where their MST values from both models start to diverge.

If Model 1 τ̂1(m) and Model 2 τ̂2(m) intersect each other at one or more positive real

numbers of m, we take the ceiling of these numbers and put them in a set of intersecting

VM counts: I = {m1,m2, ...}, mi < mi+1. If the models do not intersect, I = ∅. We

get these intersecting points analytically if possible. If not, we can numerically estimate

these intersecting points by plugging in multiple integers for m. Assuming both models are

well trained up to the maximum VM counts in S∗, we should validate models with VMs

80

larger than any VM counts in S∗. Also, to make sure there is some discrepancy between the

two models, we introduce a discrepancy threshold κ. Based on these ideas, we determine

validation VM counts as shown in Algorithm 6.

1 input : I: set of intersecting VM counts, S∗: training VM counts, κ:
discrepancy threshold

output: Sval: set of VM counts for validation
2 // Filter I with the max VM counts in S∗
3 if I 6= ∅ then
4 I ′ = {mi | mi > maxS∗,mi ∈ I};
5 end
6 else
7 I ′ = {maxS∗ + 1};
8 end
9 Sval = ∅;

10 // Search for divergent VMs

11 for i = 1, ..., |I ′| do
12 // mi: i-th element of I ′
13 mstart = mi;
14 if i = |I ′| then
15 mend = Mmax;
16 end
17 else
18 // mi+1: (i+ 1)-th element of I ′
19 mend = mi+1 − 1;

20 end
21 for m = mstart, ...,mend do
22 d(m) =|τ̂1(m)− τ̂2(m)| / min(τ̂1(m), τ̂2(m));
23 if d(m) > κ then
24 Sval = Sval ∪ {m};
25 break;

26 end

27 end

28 end
29 return Sval;

Algorithm 6. Selection of validation VM counts.

First, we filter the intersecting VMs set I with the maximum VM counts in S∗ and

store the filtered VMs set in I ′ (Line 4). Even if I is empty, we still want to search for

the divergent VM counts starting from maxS∗ + 1 (Line 7). To search for one divergent

81

VM count per element in I ′, we loop through I ′ (Line 11–28). As shown in Eq. (5.15), we

compute the following discrepancy ratio between the predicted values of Models 1 and 2 for

VM counts m (Line 22).

d(m) =
|τ̂1(m)− τ̂2(m)|

min(τ̂1(m), τ̂2(m))
. (5.15)

If it is greater than the discrepancy threshold κ, we assume that there is enough discrepancy

between the two models and add corresponding m to the validation set Sval (Line 24).

Model Selection Through Validation Error Once we get Sval, we obtain MST values

for a set of VM counts in Sval and compute validation errors in the RMSE for both models.

Finally, we select the model with the lowest validation error. If Sval is empty, which means

the discrepancy between the two models never goes above κ, we select the model with the

lowest training error.

5.4 Evaluation of MST Prediction

We evaluate the MST prediction models that are trained and selected by our framework.

We used the following typical use-case benchmarks from Intel Storm Benchmarks [106].

• Grep: Match a given regular expression with text inputs and count the number of

matched lines of texts.

• Rolling Count: Count the number of words and output the word counts every 60

seconds.

• Unique Visitor: Count the number of unique visitors to websites from web access logs.

• Page View: Count the number of page views per website from web access logs.

• Data Clean: Filter the logs with 200 HTTP status code from web access logs.

In Figure 5.3, we plot actual and predicted MST values as functions of VM counts.

Actual measurements of MST are shown in dots. Predicted values for Model 1 are shown in

82

Table 5.2. Weights of Models 1 and 2 after training.

Benchmark
Model 1 Model 2

w0 w1 w2 w3 w0 w1 w2

Grep 0.01617 1.04913 0 0 0.63117 0.74233 0.00063
Rolling Count 0.11748 2.75500 0 0 0.16593 0.27683 0.00322
Unique Visitor 0.02050 1.67805 0 0 0.01615 0.56212 0.00160

Page View 0.03512 1.61983 0 0 0.27180 0.49439 0.00089
Data Clean 0.11039 1.62948 0 0.00004 0.12286 0.49693 0.01233

VHT 0.01958 0 0.00005 0 50.69306 0 0.00394

(a) Grep (b) Rolling Count (c) Unique Visitor

(d) Page View (e) Data Clean (f) VHT

M
S

T
 [

M
b

y
te

s
/s

e
c
]

Number of VMs

Model 1 Model 2

M
S

T
 [

]

0

20

40

60

80

100

0 16 32 48 64 80 96 112 128

0

2

4

6

8

10

12

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

0 16 32 48 64 80 96 112 128

0

2

4

6

8

0 16 32 48 64 80 96 112 128
0

10

20

30

40

50

60

0 16 32 48 64 80 96 112 128

Actual Measurements

Figure 5.3. MST prediction results for typical use-case benchmarks: (a) Grep,
(b) Rolling Count, (c) Unique Visitor, (d) Page View, and (e) Data Clean, and
a machine learning application: (f) VHT, using S∗ = {3, 4, 6, 8, 24} for Models 1

and 2. X-axis: number of VMs. Y-axis: MST [Mbytes/sec].

solid lines and predicted values for Model 2 are shown in dotted lines. From the figure, we

can see that the actual MST values either hit a bottleneck (i.e., Grep, Rolling Count, Data

Clean, and VHT) or show linear improvements (i.e., Unique Visitor and Page View). Model

1 captures the bottlenecks for Grep and Rolling Count relatively well. Model 2 is trained

almost as a linear function (i.e., w2 is at most 0.0016) for Unique Visitor and Page View,

and therefore, it captures their linear behavior well. However, Model 2 fails to capture the

83

non-linear behavior of Grep. Both models are equally well fitted to Data Clean and VHT.

Figure 5.4 shows the validation error in RMSE for model selection. To obtain these

results, we used the following validation samples selected by Algorithm 6: 26 VMs for Grep,

25 and 72 VMs for Rolling Count, 25 VMs for Unique Visitor, 25 VMs for Page View. For

Data Clean and VHT, since both models produced very close predicted MST values, there

were no discrepancies larger than the δ = 0.10 threshold. Thus, the models for these two

benchmarks were compared using training errors. As the result of validation, Model 1 is

chosen for Grep, Rolling Count, and Model 2 is chosen for the rest of benchmarks. Looking

����

����
����

���	

����

��
�

��	�

����

����

����

���	

��
�

�

�

�

�

�

���	

��
�����

�������������

��
�����

��������������

��
�����

���������

��
�����

����������

��
�����

� !

��
�����

�
�
�
�

�������

�������

Figure 5.4. Validation error (RMSE) and selected models for the typical
use-case benchmarks. Models are trained with S∗ = {3, 4, 6, 8, 24}.

at Figure 5.3, these model selection results are visually convincing. Rolling Count has similar

RMSE errors for Model 1 and Model 2. However, due to the second validation sample from

72 VMs, Model 2 is selected. For Data Clean and VHT, both models are visually very close

and the training errors are almost identical.

Figure 5.5 shows prediction error in the Mean Absolute Percentage Error (MAPE) by

the selected models. The MAPE is defined as:

MAPE = 100 · 1

n

n∑
i=1

|t(i) − p(i)|
|t(i)|

, (5.16)

where n is the number of samples, t(i) is the i-th sample’s true value, and p(i) is the i-th

sample’s predicted value. The figure plots the MAPE error computed from the selected

84

����

����

���� ����

����

���� ����

		�
	

	����

���

��
	

		���

��
�

	��	�

�

�

��

��

��

���� 	
���
�

�
�
�

�
����

�����
�

��������� ���������
 ��� �������

�
�
�
�
��
�
�

������

 �!���

"��

��
�
��#

$��!��
�%

Figure 5.5. Prediction error (MAPE) for the typical use-case benchmarks using
mean value of actual MST samples and prediction made by the proposed

framework.

models and MAPE error computed from the mean value of actual MST samples. Since the

mean value is known to minimize the sum of squared error
∑n

i=1(t(i) − p(i))2, even though

it does not guarantee to minimize the MAPE, it shows low error in MAPE. Overall, the

MAPE error for our prediction framework is up to 15.83% (average: 10.14%). Since there is

some variance in the actual MST samples, even the prediction made from the mean has the

MAPE error up to 6.88% (average: 2.22%).

5.5 Discussion

In this section, we discuss the results from the experiments we have done in Sections 5.4.

Likely Cause of the Bottlenecks From the experiments in Section 5.4, the scalability

for Grep, Rolling Count, Data Clean, and VHT is limited. The reason seems to be load

imbalance between workers. For the Grep benchmark, to compute the total count of matched

patterns, the global counter is incremented by a single thread, and MST is bounded by the

performance of that single thread. For Rolling Count, the bottleneck may be caused by

imbalanced distributions of words. Just as the map-reduce programming framework [68],

once the first layer of processing units splits texts into words, the next processing units are

85

determined by the hash value of a word. Thus, depending on the distribution of words, some

nodes are more loaded than other nodes. Similar to Grep, maximum performance is bounded

by the nodes that are assigned frequently appearing words. The Data Clean’s performance

limitation seems to be caused by a similar reason to Grep: URLs filtered by the 200 status

code go to the same node. Since the objective of our prediction framework is to accurately

predict MST for larger numbers of VMs, we are not concerned about application-specific

bottlenecks; however, clarifying the mechanism behind these bottlenecks could help improve

the accuracy of prediction models in future.

Time Complexity and Generalization of the Proposed Framework Due to the ex-

haustive search, the time complexity of the subset search method presented in Section 5.3.4.1

is O(|Vtrain|e2 · |B|). With an implementation using octave, the search with Mtrain = 32 took

only a few minutes to find the best VM subset S∗ on a laptop PC with Intel Core i5 CPU.

As we increase the size of Vtrain through Mtrain and/or e2, the runtime is expected to grow

exponentially. One way to keep the runtime manageable is to use random sampling to iden-

tify S∗, rather than performing an exhaustive search over all subsets. We should be able to

find the right balance between the runtime and the likelihood of finding the optimal sub-

set. Currently when we determine data points for validation in Algorithm 6, we assume the

framework only uses the two models we presented in Section 5.3.3. We can generalize this

algorithm to support n models, for example, by defining the average pairwise discrepancies

between n models as follows:

d(m) =
1(
n
2

) ·∑
i,j

|τ̂i(m)− τ̂j(m)|
min(τ̂i(m), τ̂j(m))

. (5.17)

With this change, the entire framework will be compatible to n models.

86

5.6 Summary

In this chapter, we have presented a framework to predict the maximum sustainable

throughput (MST) for cloud-based stream processing applications. We identified a common

data processing environment used by modern stream processing systems and presented two

models for MST prediction. We statistically determine the best subset of VM counts in

terms of prediction error to collect training samples. For each new application, we train the

framework models using this subset. The framework takes several trained models and selects

the model that is expected to predict MST values for the target application with the lowest

error. We evaluated our framework on streaming applications in Apache Storm, using up

to 128 VMs. Experiments showed that our framework can predict MST with up to 10.14%

average prediction error.

In future work, we plan to apply the proposed prediction framework to other stream

data processing engines such as Flink to confirm the applicability of our approach. Other

interesting future directions include online learning to improve the performance prediction

model accuracy over time, the use of meta-algorithms such as ensemble learning to construct

a prediction model from multiple weak models, and even larger-scale performance simulation

using a cloud environment simulator such as CloudSim [112].

CHAPTER 6

UNCERTAINTY-AWARE ELASTIC VIRTUAL MACHINE

SCHEDULING

6.1 Introduction

Challenges to accurate performance prediction arise from factors such as skewed data

distribution [113] and resource contention with other applications sharing the same VMs [114].

It has been shown that if a VM scheduler incorporates an application’s performance variabil-

ity, it can achieve higher QoS objective satisfaction compared to a scheduler that is agnostic

of the performance variability [41], [115]. It is also common to use manual over-provisioning

to compensate for potential inaccuracies in performance models [116]–[118].

Workload prediction, such as ARIMA [45], has been used in elastic VM scheduling [47],

[116]–[119]. The VM schedulers in these works select the number of VMs based on the

prediction value with the minimum expected error, but they do not consider the variability

of workloads. Even though real-world time series often have recurring patterns, they can be

affected by irregular events, resulting in larger variance. Despite the evidence of the impact

of uncertainties in both application performance and future workload, existing works in VM

scheduling have not addressed these uncertainties in a holistic manner.

This work proposes a framework for proactive elastic VM scheduling for stream pro-

cessing systems in cloud computing environments that explicitly models uncertainties in 1)

VM performance, 2) application performance, and 3) workload variability. We quantify the

uncertainty from #1 and #2 through the variance of an application performance model and

Portions of this chapter are to appear in: Shigeru Imai, Stacy Patterson, and Carlos A. Varela,
“Uncertainty-aware elastic virtual machine scheduling for stream processing systems” in Proc. IEEE/ACM
Int’l Symp. on Cluster, Cloud and Grid Computing (CCGrid 18), 2018.

87

88

#3 through the variance of a workload prediction model. By incorporating uncertainties

from both prediction models into scaling decisions, our elastic stream processing framework

achieves high QoS objective satisfaction rates without human intervention at far lower cost

than a static over-provisioning approach. We focus on the application performance metric

of Maximum Sustainable Throughput (MST) [118]. MST represents the maximum data in-

put rate a stream processing application can process without backlogging any input data.

Using workload and MST prediction models, our VM scheduler proactively schedules VMs

to satisfy the throughput-QoS condition (4.1): to always maintain an MST that is greater

than the data rate of input workloads. Through simulations following real-world workload

distributions, we show that our scheduling framework achieves 98.62% of QoS satisfaction

rate, at up to 48% lower cost compared to static scheduling that covers the peak workload.

The rest of the chapter is organized as follows. In Section 6.2, we present the formu-

lation of VM scheduling problem we solve. Section 6.3 presents the proposed scheduling

techniques. Section 6.4 describes our workloads and evaluation setup, and Section 6.5 shows

the evaluation results. We present related work in Section 6.6 and conclude the paper in

Section 6.7.

6.2 Formulation of VM Scheduling Problem

We model the workload changes λ(t) over time as a discrete sequence, with timesteps

t = 1, 2, Every scheduling cycle of C timesteps, we make a scaling decision whether to

allocate or shut down VMs. We use s = 1, 2, . . . to index scheduling cycles. A scheduling

cycle s corresponds to t = (s− 1)C + 1, (s− 1)C + 2, ..., sC timesteps. This means that we

have a constant VM configuration for the duration of C timesteps, whereas the workload

changes every timestep.

When we start a new VM, we assume it takes U(< C) timesteps until it becomes

available. For example, we use C = 10 minutes and U = 2 minutes.

The problem is to find a cost-minimal sequence of VM allocations such that the MST

89

is greater than or equal to the input data rate λ(t) for all t. Thus, for each scheduling cycle

s, we must determine m(s) such that,

λ̄ = max
t=(s−1)C+1,...,sC

λ(t), (6.1)

m(s) = argmin
m∈{1,2,...,Mmax}

τ(m) ≥ λ̄, (6.2)

where Mmax is the maximum number of VMs available for scaling.

6.3 VM Scheduling Techniques

In this section, we describe our methods for estimating the number of VMs the scheduler

should allocate at each update interval. A novel feature of our approach is that we explicitly

incorporate uncertainty into our models; this includes uncertainty in the estimation process

as well as uncertainty about the change in workloads. By incorporating uncertainty, our

framework is better able to meet QoS requirements, as demonstrated in Section 6.5.

We first present our baseline VM scheduling approach. We then describe three methods

to incorporate uncertainty. These methods can be used independently or in combination.

We evaluate the effectiveness of these policies in Section 6.5.

6.3.1 Baseline MST

This technique schedules VMs based on a MST model without workload forecasting.

We are given an MST prediction model τ̂(m) trained offline and selected by the method

presented in Chapter 5 (i.e., τ̂(m) is either Model 1 or Model 2).

At the beginning of every scheduling cycle s, we make a scheduling decision at time

t = (s − 1)C + 1. We estimate the minimum number of VMs to cover the given workload

λ(t) as follows:

m(t) = argmin
m∈{1,2,...,Mmax}

τ̂(m) ≥ λ(t). (6.3)

When scaling up, new VMs will become ready after the VM startup delay of U timesteps.

90

On the other hand, when scaling down, VMs will be immediately shut down. Since we do

not forecast future workload at all in this baseline technique, this method is purely reactive.

6.3.2 Online Model Learning

Online learning can be used to update MST models as we obtain new training samples.

These training samples can reduce uncertainty in the performance models that are trained

offline. We assume the given MST model τ̂(m) is trained with the following training data

set that contains n sample pairs:

Dtrain = {(m(1), τ (1)), (m(2), τ (2),), ..., (m(n), τ (n))}, (6.4)

where (m(i), τ (i)) is the i-th training sample pair of VM count and corresponding MST value.

By definition, MST can be obtained when excessive workloads saturate the system capacity.

Thus, when the scheduler under-provisions VMs for the application workload (i.e., when the

throughput-QoS objective is violated), the application monitor can obtain a new training

sample pair (m, τ). This sample pair is added to the training data set Dtrain to re-train

the selected MST model. Note that the formulation (6.3) does not change even if we apply

online learning to the MST model τ̂(m).

6.3.3 Uncertainty-Awareness for MST

We quantify uncertainty from VM and application performance through the variance

of an MST model. Let τ̂(m) be the MST model trained using linear regression with Dtrain

shown in Eq. (6.4). For the i-th pair (m(i), τ (i)) in Dtrain, we assume the following relationship

holds between the measured MST τ (i) and predicted MST values τ̂(m(i)) for i = 1, 2, ..., n,

where n is the size of the training data set:

τ (i) = τ̂(m(i)) + ε(i), (6.5)

91

where ε(i) ∼ N (0, σ2
τ). We can estimate the true variance σ2

τ by the following σ̂τ [45]:

σ̂2
τ =

∑n
i=1(τ (i) − τ̂(m(i)))2

n− k
, (6.6)

where k is the number of regression coefficients in the MST model (i.e., k = 4 for Model 1

and k = 3 for Model 2).

Based on Eq. (6.5), we assume that MST follows the normal distribution:

τ(m) ∼ N (τ̂(m), σ̂2
τ). (6.7)

Given an input data rate λ(t) at time t, we introduce a new random variable δ = τ(m)−λ(t).

Since λ(t) is constant for a time period of [t, t+ 1) (i.e., one minute in this work), δ follows

N (τ̂(m)− λ(t), σ̂2
τ). We can then estimate the probability of δ ≥ 0:

Pr[δ ≥ 0] =

∫ ∞
0

f(δ | τ̂(m)− λ(t), σ̂2
τ) dδ,

where f(δ|τ̂(m)−λ(t), σ̂2
τ) is the probability density function for the normal distribution (6.7).

Figure 6.1 shows this probability density function. In the figure, the shaded area corresponds

to the value of Pr[τ(m) − λ(t) ≥ 0]. We estimate the minimum number of VMs that are

Probability

Figure 6.1. Probability density function for normal distribution
N (τ̂(m)− λ(t), σ̂2

τ). The shaded area corresponds to the value of
Pr[τ(m)− λ(t) ≥ 0].

92

required to satisfy the throughput-QoS objective τ(m) ≥ λ(t) as follows:

m(t) = argmin
m∈{1,2,...,Mmax}

Pr[τ(m)− λ(t) ≥ 0] ≥ ρ, (6.8)

where ρ ∈ [0.5, 1.0) is a QoS satisfaction target.

In this formulation, uncertainty is quantified in terms of variance, as shown in Eq. (6.6),

and larger variance leads to require a larger number of VMs to satisfy the constraint in

Eq. (6.8). When ρ ≈ 1.0, we expect δ to be large to prevent QoS violations, which means

that the mean of the normal distribution in Figure 6.1 is far away from zero. When ρ = 0.5,

however, we expect δ to be very close to zero. When ρ = 0.5, this is equivalent to finding

the smallest m̂ that satisfies τ̂(m) ≥ λ(t) (i.e., it is equivalent to the baseline MST in

Section 6.3.1).

6.3.4 Uncertainty-Awareness for Workload Forecasting

In this section, we add uncertainty-awareness for workload forecasting to the baseline

MST shown in Section 6.3.1. We make multiple forecasts into the next scheduling cycle and

determine the highest expected workload we should cover to satisfy the QoS objective.

6.3.4.1 Workload Forecasting

We use Auto-regressive-moving-average (ARMA) models [45] to forecast future work-

loads. An ARMA(p, q) model consists of an auto-regressive (AR) term of order p and a

moving-average (MA) term of order q as follows:

λ(t) = φ1λ(t− 1) + · · ·+ φpλ(t− p) + (6.9)

ε(t) + θ1ε(t− 1) + · · ·+ θqε(t− q),

where λ(t), λ(t−1), ..., λ(t−p) is a series of observed input data rates; ε(t), ε(t−1), ..., ε(t−q)

is a series of error terms ε(t) ∼ N (0, σ2
λ); and φ = (φ1, ..., φp) and θ = (θ1, ..., θq) are model

93

parameters. Suppose we have a series of n input data rates λ(t), λ(t − 1), ..., λ(t − n − 1);

maximum likelihood estimation is used to estimate φ and θ. Once we estimate φ and θ, we

calculate a k-step ahead forecast λ̂(t+ k) by recursively applying Eq. (6.9) as follows:

λ̂(t+ k) = φ1λ(t+ k − 1) + · · ·+ φpλ(t+ k − p) + (6.10)

ε(t+ k) + θ1ε(t+ k − 1) + · · ·+ θqε(t+ k − q).

An estimate of σ2
λ is given by:

σ̂2
λ =

φ2
1 + · · ·+ φ2

p + θ2
1 + · · ·+ θ2

q

n
. (6.11)

Further, we can define a new set of parameters ψ = (ψ1, ψ2, ..., ψj) using φ and θ as follows:

ψ1 = φ1 − θ1

ψ2 = φ1ψ1 + φ2 − θ2 (6.12)

...

ψj = φ1ψj−1 + · · ·+ φpψj−p − θj,

where θj = 0 for j > q. Using σ̂2
λ and ψ, we can estimate the variance for the k-step ahead

forecast σ̂2
λ|t+k as follows [45]:

σ̂2
λ|t+k =

{
1 +

k∑
j=1

ψ2
j

}
σ̂2
λ. (6.13)

6.3.4.2 Highest Workload Estimation

Figure 6.2 shows how we determine the highest expected workload in the next schedul-

ing cycle. First, we forecast input data rates and variances for the next scheduling cycle

in λ̂(t + k) and σ̂2
λ|t+k for k ∈ [1, S) using Eqs. (6.10) and (6.13), respectively. We then

94

determine the timestep h with the highest expected workload at t+ h:

h = argmax
k ∈ [1,S)

λ̂(t+ k) + 2σ̂λ|t+k. (6.14)

We add 2σ̂λ|t+k to the forecasted value in Eq. (6.14) to yield a conservative VM allocation.

��������

	
������

����

� ������ ���

��������	����
����

��������	��	�	
��������

����
���
��
��
	�

�������	

��
�
�
��
�
�
��
�	
�
�

���

���
	����������

���

Figure 6.2. Finding the highest expected workload in the scheduling cycle
[t, t+ C).

6.3.4.3 VM Scheduling

Once we determine h from Eq. (6.14), we then estimate the minimum number of

VMs needed to cover the workload λ̂(t + h) using the method described in Section 6.3.3 to

incorporate the predicted workload variance. Assuming the h-step ahead forecast follows the

normal distribution:

λ(t+ h) ∼ N (λ̂(t+ h), σ̂2
λ|t+h), (6.15)

the difference between MST and the λ(t+h), δ = τ(m)−λ(t+h), is also expected to follow

a normal distribution:

δ ∼ N (τ̂(m)− λ̂(t+ h), σ̂2
λ|t+h). (6.16)

95

Similar to Eq. (6.8), we estimate the probability of δ ≥ 0:

Pr[δ ≥ 0] =

∫ ∞
0

f(δ|τ̂(m)− λ̂(t+ h), σ̂2
λ|t+h) dδ. (6.17)

We estimate the minimum number of VMs m̂ required to satisfy the throughput-QoS objec-

tive τ(m) ≥ λ(t+ h) as:

m(t) = argmin
m∈{1,2,...,Mmax}

Pr[τ(m)− λ(t+ h) ≥ 0] ≥ ρ. (6.18)

6.3.5 Uncertainty-Awareness for both MST and Workload Forecasting

We now show how to incorporate uncertainties from both MST and workload forecast-

ing into the VM scheduling. Following the method in Section 6.3.4.2, we first determine

the future timestep t + h that is expected to give the highest workload value in the next

scheduling cycle. Assuming that the MST and workloads are independent, the difference

between MST and the h-step ahead workload, δ = τ(m) − λ(t + h), also follows a normal

distribution:

δ ∼ N (τ̂(m)− λ̂t+h, σ̂2
τ + σ̂2

λ|t+h). (6.19)

Similar to Eqs. (6.8) and (6.17), we estimate the probability of δ ≥ 0 as follows:

Pr[δ > 0] =

∫ ∞
0

f(δ|τ̂(m)− λ̂(t+ h), σ̂2
τ + σ̂2

λ|t+h) dδ,

where f(δ | τ̂(m) − λ̂(t + k), σ̂2
τ + σ̂2

λ|t+k) is the probability density function for the normal

distribution (6.19). We then estimate the minimum number of VMs m̂ required to satisfy

the throughput-QoS objective τ(m) ≥ λ(t+ h) as:

m(t) = argmin
m∈{1,2,...,Mmax}

Pr[τ(m)− λ(t+ h) ≥ 0] ≥ ρ. (6.20)

96

6.4 Evaluation Setup

In this section, we describe the test applications and workloads used in our evaluations.

We also describe the training phase and parameterizations for our application performance

and workload models.

6.4.1 Test Applications and Workloads

We evaluate our proposed framework using the following applications:

• Grep, Rolling Count, Unique Visitor, Page View, and Data Clean: Typical use-case

benchmarks from Intel Storm Benchmarks [106].

• Vertical Hoeffding Tree (VHT): Stream machine learning application from Apache

SAMOA [120].

• Rolling Hashtag Count: Typical word count-like application which counts the num-

ber of Twitter hashtags. It outputs hashtag counts every five seconds for the results

computed in the 60 seconds moving window.

• Rolling Flight Distances: This application computes distances between all flights in

the near future. It outputs flight pairs which distance is less than a threshold every

five seconds for the results computed in the 60 second moving window.

We use the three workloads as shown in Figure 6.3. All workloads are time series of

data rates in Kbytes/sec over one week of time. These workloads were created as follows:

• World Cup 98 in Figure 6.3(a) was created from the FIFA World Cup 1998 website

access logs [121] (duration: 6/29/1998-7/5/1998, time in UTC). The workload spikes

corresponds to the days when there were popular matches. For example, there were

two matches of round of 16 on June 30 and two quarter finals on July 3.

• Tweets in Figure 6.3(b) was created from tweets downloaded from twitter.com using

Twitter APIs [122] (duration: 4/10/2016 to 4/16/2016, time in EDT). Downloaded

97

�

��

���

���

���

���

���

�
��
�
��
��
�

�
��
�
��
��
�

�
��
�
��
�
��
�

�
��
�
��
	
��
�

�
�

�
��
��
�

�
�

�
��
��
�

�
�

�
��
�
��
�

�
�

�
��
	
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
�
��
�

�
��
��
	
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
�
��
�

�
��
��
	
��
�

�
�

��
��
�

�
�

��
��
�

�
�

��
�
��
�

�
�

��
	
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
�
��
�

�
��
��
	
��
�

�
�

��
��
�

�
�

��
��
�

�
�

��
�
��
�

�
�

��
	
��
�

�
��
��
��
�

�
�
��
��
�
�
�	

�
�

��
��
��
��

�

�

�

�

�

��

�
��
�
��
��
�

�
��
�
��
��
�

�
��
�
��
�
��
�

�
��
�
��
	
��
�

�
��
�
��
��
�

�
��
�
��
��
�

�
��
�
��
�
��
�

�
��
�
��
	
��
�

�
��
�
��
��
�

�
��
�
��
��
�

�
��
�
��
�
��
�

�
��
�
��
	
��
�

�
��

��
��
�

�
��

��
��
�

�
��

��
�
��
�

�
��

��
	
��
�

�
��
�
��
��
�

�
��
�
��
��
�

�
��
�
��
�
��
�

�
��
�
��
	
��
�

�
��

��
��
�

�
��

��
��
�

�
��

��
�
��
�

�
��

��
	
��
�

�
��
�
��
��
�

�
��
�
��
��
�

�
��
�
��
�
��
�

�
��
�
��
	
��
�

�
��
�
��
��
�

�
�
��
��
�
�
�	

�
�

��
��
��
��

�

���

���

���

���

����

	
��

��
��
�

	
��

��
��
�

	
��

��
�
��
�

	
��

��
	
��
�

	
��
�
��
��
�

	
��
�
��
��
�

	
��
�
��
�
��
�

	
��
�
��
	
��
�

	
��

��
��
�

	
��

��
��
�

	
��

��
�
��
�

	
��

��
	
��
�

	
��
�
��
��
�

	
��
�
��
��
�

	
��
�
��
�
��
�

	
��
�
��
	
��
�

	
��
�
��
��
�

	
��
�
��
��
�

	
��
�
��
�
��
�

	
��
�
��
	
��
�

	
��
	
��
��
�

	
��
	
��
��
�

	
��
	
��
�
��
�

	
��
	
��
	
��
�

	
��
�
��
��
�

	
��
�
��
��
�

	
��
�
��
�
��
�

	
��
�
��
	
��
�

	
��
�
��
��
�

�
�
��
��
�
�
�	

�
�

��
��
��
��

��������	�
���
�������������
�

������������������������

���������������������
�

Figure 6.3. Workloads used for evaluation. Each workload has one week of
data: (a) World Cup 98 (6/29/1998-7/5/1998, time in UTC), (b) Tweets

(4/10/2016-4/16/2016, time in EDT), and (c) ADS-B (8/13/2017-8/19/2017,
time in UTC).

tweets were those in English from the U.S. contiguous 48 states. Even though we were

only allowed to obtain a fraction of all tweets from that time period, the time series

shows clear daily recurring patterns.

• ADS-B in Figure 6.3(c) was created from the Automatic Dependent Surveillance-

Broadcast (ADS-B) data from ADS-B Exchange [123] (duration: 8/13/2017-8/19/2017,

time in UTC). The data are provided by worldwide community of volunteers and con-

tains flight data from all over the world. Just as the Tweets workload, it also shows

98

daily recurring patterns.

6.4.2 Offline MST Model Training

We obtain MST samples as described in Section 4.3.1. All the test applications re

implemented with Apache Storm v0.10.0 and are configured to process stream data from

Kafka v2.11. Both Storm and Kafka are running on Amazon EC2, where we use the m4.large

VM instance type for all the worker nodes of Storm. As we have explained in Section 6.3.1,

we collect MST samples for each test application for the pre-determined set of VMs counts

S∗ = {3, 4, 6, 8, 24} to predict MST for up to 128 VMs. We then train both Models 1 and 2

and select the better-fitting model for each application. For Rolling Flight Distances, we use

the following Sflight = {1, 2, 3, 5, 6, 8, 9, 11, 12, 14} since it is designed to process the actual

ADS-B workloads in Figure 6.3(c) and the MST of 14 VMs is sufficient to process the peak

workload of 800 Kbytes/sec. Figure 6.4 shows the selected MST models. Predicted MST

values are plotted together with actual MST measurements for up to 128 VMs except for

Rolling Flight Distances, which shows measurements up to 14 VMs.

���������

	�
����
����
�
��

������

���������

	�
����
����
�
��

������������������

	�
����
����
�
��

�
������������

	�
����
����
�
��

���� �����
���

	�
����
����
�
��

�!���"#�

	�
����
����
�
��

�

�

�

�

�

�

�

�

�

	

�

	

�

��������	�
��

��
����

��
����

�������������������

�$����

����%
��$�� ��������

	�
����
����
�
��

������

����"��$���������

	�
����
����
�
��

�

�

�

�

�

�

�

�

�

	

�

	

�

�

��

��

��

��

���

� �� �� �� �� �� �� ��� ���

�

�

�

�

�

��

��

� �� �� �� �� �� �� ��� ���

�

��

��

��

��

	�

��

� �� �� �� �� �� �� ��� ���

�

��

��

��

��

	�

��

� �� �� �� �� �� �� ��� ���

�

�

�

�

�

� �� �� �� �� �� �� ��� ���

�

��

��

��

��

	�

��

� �� �� �� �� �� �� ��� ���

�

	�

���

�	�

���

�	�

� �� �� �� �� �� �� ��� ���

�

�
�

�
�

�
�

�
�

�

�
�

� � � � � �� �� �� ��

Figure 6.4. Selected MST prediction models after training. Models from (a)
Grep to (g) Rolling Hashtag Count are trained with samples obtained from up
to 24 VMs in S∗ = {3, 4, 6, 8, 24}, whereas (h) Rolling Flight Distances is trained
with samples obtained from up to 14 VMs in Sflight = {1, 2, 3, 5, 6, 8, 9, 11, 12, 14}.

99

6.4.3 Workload Forecasting Model Training

As shown in Eq. (6.9), an ARMA(p, q) model consists of an auto-regressive (AR) term

of order p and a moving-average (MA) term of order q. We determine the values for p and

q using Akaike information criterion (AIC), which is commonly used in time series analysis

. AIC evaluates the fitness of a model to data as well as the simplicity of the model. Using

the first 100 values from each test workload, we perform a grid search to find the (p, q)

pair that gives the lowest AIC: we compute AIC for all possible pairs of p = 0, 1, 2, 3 and

q = 0, 1, 2, 3 except for (p, q) = (0, 0). As the result of the search, we obtained models as

shown in Table 6.1. For online update of the model, we use a sliding window of the past 100

workload values to estimate φ and θ in Eq. (6.9) by maximum likelihood estimation.

Table 6.1. Selected ARMA models for the test workloads.

Workload Model

World Cup 98 ARMA(1, 2)
Tweets ARMA(1, 1)
ADS-B ARMA(1, 3)

6.5 Evaluation

We evaluate the VM scheduling techniques presented in Section 6.3 with the real-world

workloads shown in Figure 6.3. Evaluations are simulation-based, however, MST prediction

models are trained with real measurements as described in Section 6.4.2. We first describe

the experiment settings that are common to all evaluations. We then give the experimental

results.

6.5.1 Common Experimental Settings

6.5.1.1 Simulation Time Horizon

We perform simulations over discrete timesteps t = 1, 2, ..., T , where a workload value

λ(t) is given for each t. The workloads change every minute and have duration of one week,

so T = 7 × 24 × 60 = 10, 080 for all three workloads. Our VM scheduler performs VM

100

allocation or deallocation every C timesteps and consider U timesteps of VM startup time.

In the following simulations, we use C = 10 and U = 2, which correspond to 10 and 2

minutes of physical time, respectively.

6.5.1.2 Workloads and Test Applications

We test the workloads against the MST models created for the test applications as

shown in Table 6.2. The World Cup 98 workload is used for Grep, Rolling Count, Unique

Visitor, Page View, Data Clean, and VHT to evaluate applications with different scaling

patterns with a consistent real-world workload. For Rolling Hashtag Count and Rolling

Flight Distances, we use the Tweets and ADS-B workloads that are actually processed by

these two applications to create their MST models, respectively. Since data rates in

the test workloads and throughput generated from the trained MST models are not directly

comparable to the World Cup 98 and ADS-B workloads, we artificially create more workload

data proportionally keeping workload distribution patterns to reach a maximum throughput

as shown in the “Peak Throughput” column in Table 6.2. For the ADS-B workload, actual

peak of the workload and the MST model for Rolling Flight Distances match, so there is no

need to recreate the workload.

Table 6.2. Workloads and test applications (MST models) used for evaluations.

Workload
Test Application Peak Throughput
(MST models) [Mbytes/sec]

World Cup 98

Grep 32
Rolling Count 10
Unique Visitor 48

Page View 46
Data Clean 5

VHT 49
Tweets Rolling Hashtag Count 200
ADS-B Rolling Flight Distances None

101

6.5.1.3 Hypothetical Ground Truth MST

To evaluate a series of allocated VM counts m(t) for t = 1, 2, ..., T , we need to know the

ground truth MST for m(t) for a given application. We create a hypothetical ground truth

MST model τ̂tru(m) from actual MST samples. Given a VM count m, τ̂tru(m) returns an

MST value drawn from a normal distribution N (µm, σ
2
m). The mean µm and variance σ2

m are

created from pairwise linear interpolation of the mean and variance of the MST for measured

VMs m1 and m2, where m1 and m2 are the two closest VM counts to m, with m1 < m < m2.

Figure 6.5 shows an example of hypothetical ground truth probability distribution created

from the measured MST samples for the Grep benchmark. We can see that the mean and

95% confidence interval are linearly interpolated.

�
�
�
��
�
�
�
�	

�

	
�

��������	�
��

���������	��
��
��

����
�

�����������	�����������

Figure 6.5. Example of hypothetical ground truth probability distribution
created from the measured MST samples for the Grep benchmark.

6.5.1.4 Baseline Scheduling

We use the following scheduling policies as the baseline.

Ground Truth: Optimal scaling policy based on the actual MST values. It allocates the

minimum number of VMs that generates a larger MST than a given workload.

Static Peak: Static VM allocation policy that covers the peak workload. The peaks are

equal to the normalization factors in Table 6.2 (for Rolling Flight Distances, the peak is 830

102

Kbytes/sec).

6.5.1.5 Evaluation Metrics

We use the following metrics to evaluate scheduling results.

QoS Satisfaction Rate

QoS Satisfaction Rate[%] =
100

T

T∑
t=1

I(τ̂tru(m(t)) ≥ λ(t)), (6.21)

where T is the total timesteps (=10,080) of a simulation, m(t) is the allocated VM counts

using our VM scheduling technique at time t, λ(t) is the workload at time t, and I(·) is the

indicator function that returns 1 if the argument is true and 0 otherwise. Note that since the

scheduling cycle is C = 10 timesteps, we will compare ten workload values against a single

MST value.

Relative VM costs Since total VM cost depends on a sequence of workload values, we

cannot directly compare absolute costs obtained from different workload values. Thus, we

compute VM allocation cost relative to the cost obtained from the ground truth scheduling

and the cost obtained from the static scheduling as follows:

RelativeCosttru =

∑T
t=1 m(t)∑T

t=1mtru(t)
, (6.22)

RelativeCoststatic =

∑T
t=1m(t)

T ·maxtmtru(t)
, (6.23)

where m(t) is the number of allocated VM at time t by the prediction framework and mtru(t)

is the true required number of VMs obtained by the ground truth scheduling at time t. Since

we use homogeneous VMs, a relative cost is the ratio of the numbers of VMs.

6.5.2 Evaluation: Scheduling Policy vs. QoS & Cost

We first evaluate the impact of the different scheduling policies on QoS and Cost.

103

6.5.2.1 Experimental Settings

Depending on how we incorporate uncertainty awareness of MST, workload forecasting,

and online learning techniques into the VM scheduler, we have multiple scheduling policies,

as shown in Table 6.3. Each column has the following meaning:

UA: This option enables uncertainty-awareness for MST.

OL: If this option is chosen, online learning for the MST model is performed as described

in Section 6.3.2, otherwise the MST model is fixed during the simulation.

ARMA: If this option is chosen, workload forecasting with an ARMA model is enabled and

the scheduling is uncertainty-aware for workload forecasting and scaling, otherwise workload

forecasting is not used.

Eq.: Depending on the combination of the three options, it shows a reference to the equation

used for scheduling.

Table 6.3. VM scheduling policies for evaluation.

Policy ID
MST

ARMA Eq.
UA OL

0: MST (6.3)
1: MST + UA (6.8)
2: MST + OL (6.3)
3: MST + UA + OL (6.8)
4: MST ; ARMA (6.18)
5: MST + UA ; ARMA (6.20)
6: MST + OL ; ARMA (6.18)
7: MST + UA + OL ; ARMA (6.20)

Policy IDs are named after the corresponding scheduling options. We ran simulations

five times per application per policy. Since there are eight applications, the number of

simulation runs per policy is 8× 5 = 40. For each policy, we took the average of 40 runs for

QoS satisfaction rates and relative costs against the ground truth and static peak scheduling

policies. The QoS satisfaction target ρ is 0.95.

104

6.5.2.2 Scheduling Results

Figure 6.6 shows average (a) QoS satisfaction rates and (b) relative costs across all

the applications for the scheduling policies in Table 6.3, in descending order of the QoS

satisfaction rate. Error bars show ± 1 standard deviation. We can see the overall trend

where the QoS satisfaction rate improves with increasing cost as the policy becomes more

complex. The most complex #7 policy achieved 98.62% QoS satisfaction rate. While it

cost 84% more than the ground truth scheduling, it was 48% less when compared to static

scheduling that covers the peak workload. We also notice that each of the three scheduling

options significantly improved QoS satisfaction rates from 52% to 73-81% QoS satisfaction

rates compared to the base #0 policy. Policies #7 and #5 show very close QoS satisfaction

rates: 98.62% vs. 98.35%; however, in terms of the relative cost to ground truth, #7 costs

7% less than #5 (#7: 1.85 vs. #5: 1.99). This result suggests that the online learning

technique contributes to lower the cost. Regardless of using the online learning technique,

when we consider uncertainties from both MST and workload forecasting models in #7 and

#5, we successfully achieved high QoS satisfaction rates. These satisfaction rates are also

close to the QoS satisfaction target of ρ = 0.95.

Figure 6.7 shows application-wise QoS satisfaction rates and relative costs for four

scheduling policies, #0, #1, #5, and #7. These policies were chosen so that a new scheduling

technique was incrementally added. From #0 to #1, UA was added; from #1 to #5, ARMA

was added; and from #5 to #7, OL was added. Overall, we can see that as we add a new

technique, the QoS satisfaction rates improve. The first two rates improvements (i.e., #0 to

#1 and #1 to #5) can be explained in terms of the scheduling techniques: we add variance

for MST in (6.7) and then add another variance for workload forecasting incrementally

in (6.19). Since larger variance leads to more conservative VM allocation, improvement in

QoS satisfaction rates can be expected. For the third improvement (i.e., #5 to #7), Unique

Visitor, Page View, and Rolling Hashtag Count show at least 20% of QoS rate increase.

This is most likely due to the relationship between initial MST models after offline training

105

����� �����

����	 ����� �����

��	�
��		

���		

�

��

��

��

��

���

���

�
��
�
�
�
�
�
	
�

�
�

	

�
	

�
��
�
�
�
�
�
	
�

	

�
	

�
��
�
�
�
�

�
�

	

�
	

�
��
�
�
�
�
�
	
�

�

�
��
�
�
�
�
�
	

�
��
�
�
�
��
	

�
	

�
��
�
�
�
�

�

�
��
�
�
�

�
�
�
��
�
��
�	
�

�
��
�
��
�
�

��
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�

���

�

���

�

���

	

�
��
�
�
�
�
�
	
�

�
�

	

�
	

�
��
�
�
�
�
�
	
�

	

�
	

�
��
�
�
�
�

�
�

	

�
	

�
��
�
�
�
�
�
	
�

�

�
��
�
�
�
�
�
	

�
��
�
�
�
��
	

�
	

�
��
�
�
�
�

�

�
��
�
�
�

�

��
��
�

��
�
��
�

����������
����������
���������� ����������	�
�	�
������� ����������	������������

������� ���	
����	�
�����

���������	�� ��
�

Figure 6.6. Average (a) QoS satisfaction rates and (b) Relative costs across the
all applications for different scheduling policies in Table 6.3. QoS satisfaction

target: ρ = 0.95. Error bars show ± 1 standard deviation.

and actual MST sample values. As shown in Figure 6.4, these three models have some VM

counts where predicted values exceed actual sample values. This means that the models over-

estimate their MST, and thus they tend to under-provision VMs. By updating their MST

models online, the models become more accurate, which can lead to better QoS satisfaction

rates.

For all the applications except for VHT, if we spend more cost, we are rewarded with

106

�

���

�

���

�

���

�

���

�

��

��

��

	�

���

�
��
�
�
�

�
��
�
�
�
�
	

�
��
�
�
�
�
	

��
�

�

�
��
�
�
�
�
	

�
�
�
��
�

�

�
��
�
�
�

�
��
�
�
�
�
	

�
��
�
�
�
�
	

��
�

�

�
��
�
�
�
�
	

�
�
�
��
�

�

�
��
�
�
�

�
��
�
�
�
�
	

�
��
�
�
�
�
	

��
�

�

�
��
�
�
�
�
	

�
�
�
��
�

�

�
��
�
�
�

�
��
�
�
�
�
	

�
��
�
�
�
�
	

��
�

�

�
��
�
�
�
�
	

�
�
�
��
�

�

�
��
�
�
�

�
��
�
�
�
�
	

�
��
�
�
�
�
	

��
�

�

�
��
�
�
�
�
	

�
�
�
��
�

�

�
��
�
�
�

�
��
�
�
�
�
	

�
��
�
�
�
�
	

��
�

�

�
��
�
�
�
�
	

�
�
�
��
�

�

�
��
�
�
�

�
��
�
�
�
�
	

�
��
�
�
�
�
	

��
�

�

�
��
�
�
�
�
	

�
�
�
��
�

�

�
��
�
�
�

�
��
�
�
�
�
	

�
��
�
�
�
�
	

��
�

�

�
��
�
�
�
�
	

�
�
�
��
�

�

��
 ������������� �������������� ��������� ���������� � ! ��� ��"��������� ���#���"�

������$��

�
�
��
��
�
�
�	

��
�

�

��

�
��
��
�
��
�

�
��
�
��
��
�
�

%�&�&����'�$����������()* ������+����������
����,�!���" ������+����������&����$����-

Figure 6.7. QoS satisfaction rates and relative costs for the #0, #1, #5, and
#7 scheduling policies in Table 6.3. QoS satisfaction target: ρ = 0.95. Error

bars show ± 1 standard deviation.

higher QoS satisfaction rates. However, VHT shows 100% QoS satisfaction rates even with

the the most basic #0 policy. This is due to the fact that VHT does not scale at all as shown

in Figure 6.4. To achieve a 100% QoS satisfaction rate, both static peak and ground truth

policies needed 1 VM for the entire simulation period. However, our scheduling techniques

with ARMA unnecessarily over-provision especially when spikes occur.

6.5.3 Evaluation: QoS Satisfaction Target vs. QoS & Cost

To investigate how the QoS satisfaction target ρ affects actual QoS and cost, we tested

ρ = {0.5, 0.7, 0.9, 0.95} with the “#7:MST+UA+OL;ARMA” policy. We ran simulations

five times per application per ρ and took the average QoS satisfaction rate and relative

cost across all the applications. Figure 6.8 shows the results. We can see that ρ and QoS

satisfaction rate and both relative costs positively correlate. In fact, Pearson’s correlation

coefficient between ρ and the QoS satisfaction rate was 0.652. Looking at the slope from

ρ = 0.9 to ρ = 0.95 on the relative cost to ground truth, it is steeper than that from ρ = 0.7

to ρ = 0.90. This result matches the following fact: since ρ is a constraint on the probability

of a normal distribution, when the value of ρ approaches 1.0, it will be required to allocate

infinitely many VMs to satisfy the constraint.

107

����

�

���

�

���

�

���

�

���

�

��

��

	�

�

���

��� ��� ��	 ��� ��
 ��� �

�
�
��
��
�
�
�	

��

�

�

�
��
��
�
��
�

�
��
�
��
��
�
�

�

���������	�
��������
���� �
�����
���������������������

�
�����
��������������
��
��

Figure 6.8. QoS satisfaction target ρ vs. actual QoS satisfaction rates and
relative costs. Error bars show ± 1 standard deviation.

6.5.4 VM Allocation Sequence

To confirm the effectiveness of scheduling policies on VM allocation sequences, we

evaluated the same four scheduling policies (#0, #1, #5, and #7) used in Figure 6.9 with

ρ = 0.95 and the Grep application. We plot (a) Input workload and allocated MST, (b)

allocated number of VMs, and (c) backlogged data. Since the difference is hardly visible, in

Figures 6.9(a) and (b), we only plot #0 and #7 together with the ground truth and static

policies. From Figure 6.9(a), it appears #0 closely follows the input workload; however,

from Figure 6.9(c), we can confirm that it accumulates up to 12.8 Gbytes of backlogged data

when the input workload spikes. Since #0 does not have any uncertainty consideration or

workload forecasting, this result is unavoidable. Unlike #0, #5 and #7 proactively react to

the workload spikes and successfully avoid backlogging.

6.6 Related Work

Workload forecasting is widely used in proactive elastic VM scheduling. Roy et al. [47]

used an ARIMA model to forecast the World Cup 98 workload, which is also used in this

work. Hu et al. proposed KSwSVR, a workload forecasting method based on Kalman filters

and Support Vector Regression and applied it to elastic resource provisioning [116]. Jian et al.

108

�

��

���

���

� ���� ���� ���� ���� ��	� ����

�
�
�
�
�
�
��
	�

�
�

����������	
 �	�	
� ������ �������������������

�����

���

��	��

���

��

���

��

���

�	

���

��

���

�

���

�

��

�

� ���� ���� ���� ���� ��	� ����

�
�
��
��
�
�
�
	

�
�
��

�
�
�
��
��

������ ��������� ���������������� �������������������

�����

���

��	��

���

��

���

��

���

�	

���

��

���

�

���

�

��

��

��

��

� ���� ���� �	��

��
��� ����

��
�
�
�

�
�
��
��
�
	
��

�
�

�
�
�
��
��
��
��

����	����� ��� ����������	
 �	�	
� ������ �������������������

�����

���

��	��

���

��

���

��

���

�	

���

��

���

�

���

��������	�
��
���������������	������

����������	��������� ������

���������	

���
���

Figure 6.9. Scheduling results for the Grep application with the FIFA world cup
1998 website access workload (6/29/1998-7/5/1998): (a) Input workload and

allocated MST, (b) Allocated number of VMs, and (c) Backlogged data.

used a simple linear model to forecast future workloads, where parameters are estimated by

linear regression, and to proactively allocate VMs estimated by a M/M/m queuing theory

model [117]. ProRenaTa, developed by Liu et al. [119], combines proactive and reactive

approaches for elastic scaling on distributed storage systems. In each scheduling cycle, the

proactive scheduler first predicts workload using an ARIMA model and makes an initial

scaling decision. To address inaccurate workload prediction, after the reactive controller

observes the actual workload, it allocates extra VMs if needed. One of the major differences

109

between our work and these works is that we explicitly account for estimated uncertainty

from workload forecasting and use that information to achieve high QoS satisfaction rate in

a cost efficient manner.

There are several previous works that require manual parameter configurations to

achieve high QoS. Rodriguez and Buyya [41] considered performance variation of VMs for

workflow applications with a performance degradation parameter defined for each VM type.

This parameter effectively adjusts the over-provisioning rate per VM type. Even though

KSwSVR [116] showed good prediction accuracy, they needed to specify a parameter for

over-provisioning to reduce QoS violations. Similarly, in our own previous work [118], we

introduced over-provisioning rate parameters to account for the inaccuracy of application

performance prediction models. Our scheduling framework also provides ρ, a parameter to

control QoS satisfaction rate; however, due to the reasonably positive correlation of 0.652 to

the actual QoS satisfaction rate and also due to the fact that it is bounded by 1.0, the cost

for finding the right ρ value can be significantly lower than the cost for parameter tuning in

these existing works.

6.7 Summary

We have proposed a framework for proactive elastic VM scheduling for stream pro-

cessing systems in cloud computing environments that explicitly incorporates uncertainty

in application performance and workloads. The framework estimates the required number

of VMs that satisfies a certain probability criteria for the QoS objective, using expected

variances from application performance and workload prediction models. We have shown

that our scheduling framework can achieve 98.62% of QoS satisfaction in simulations using

real-world workloads. Further, the scheduler achieves up to 48% lower cost compared to a

static scheduling that covers the peak workload.

CHAPTER 7

CONCLUSION AND FUTURE DIRECTIONS

In this thesis, we explored QoS-aware elastic data processing for IaaS clouds from three

different processing models: batch, micro-batch, and streaming. Our studies show that QoS-

aware elastic data processing is effective for these processing models in both performance

scalability and cost savings. For batch processing, elastic resource scheduling helped achieve

the target QoS metrics such as CPU utilization and job completion time. For both micro-

batch and stream processing with fluctuating workloads, QoS-aware elastic scheduling saved

up to 49% cost compared to a static scheduling that covers the peak workload to achieve

a similar level of throughput QoS satisfaction. These results show potential for future fully

automated cloud computing resource management systems that efficiently enable truly elastic

and scalable general-purpose workload.

7.1 Chapter Summary

We summarize the results from each chapter as follows:

• In Chapter 2, we presented two frameworks for elastic batch processing: auto-scaling

using application migration as a reconfiguration strategy in Section 2.1 and cost-

optimal heterogeneous VM scheduling using Workload-tailored Elastic Compute Units

(WECUs) in Section 2.2. The former approach did not use any prior knowledge about

the target application, but gradually scaled up the application with its light-weight

application migration. It achieved 36% shorter execution time compared to a static

scheduling with the same initial condition (i.e., 4 vCPUs). Unlike the former, the

latter approach fully used performance metrics of the target application through WE-

CUs. It generated cost-optimal VM configurations with 4.59% average execution time

prediction error.

110

111

• In Chapter 3, we presented an elastic middleware framework that is specifically de-

signed to solve ILP problems generated from continuous air traffic streams. We pro-

posed a speculative VM scheduling algorithm with time series and resource prediction

models. It achieved a similar performance to a static scheduling that covers the peak

workload while using 49% less VM hours for a smoothly changing air traffic. However,

for a sharply changing air traffic, our scheduling algorithm allocated slightly more VM

hours to achieve the same performance. Our algorithm is able to adapt dynamically

to potentially unforeseen fluctuating demand with a reasonable prediction accuracy.

• In Chapter 4, we outlined a framework for sustainable elastic stream processing and

presented the concept of Maximum Sustainable Throughput (MST) that we further

explored in Chapters 5 and 6.

• In Chapter 5, we presented a cost-effective MST prediction framework for stream pro-

cessing applications with various scalability characteristics. We statistically determine

the best subset of VM counts in terms of prediction error from up to 32 VMs to collect

training samples. For each new application, we train the two MST prediction models

using this subset. The framework takes several trained models and selects the model

that is expected to predict MST values for the target application with the lowest er-

ror. We evaluated our framework on streaming applications, using up to 128 VMs.

Experiments showed that our framework can predict MST with up to 15.8% average

prediction error.

• In Chapter 6, we proposed a framework for proactive elastic VM scheduling for stream

processing systems that explicitly incorporates uncertainty in application performance

and workloads. The framework estimates the required number of VMs that satisfies

a certain probability criteria for the QoS objective, using expected variances from

application performance and workload prediction models. We have shown that our

scheduling framework can achieve 98.62% of QoS satisfaction in simulations using real-

112

world workloads. Further, the scheduler achieved up to 48% lower cost compared to a

static scheduling that covers the peak workload.

7.2 Future Directions

7.2.1 Future Elastic Resource Allocation Framework

Inspired by A Manifesto for Future Generation Cloud Computing [124], we envision

a future QoS-aware elastic data processing framework that can cover a wide range of use-

cases beyond data processing in single data centers. We enumerate possible features for such

framework as follows:

• Geo-distributed Data Processing: The framework processes geo-distributed data

sets as well as centralized data sets.

• Resource Allocation Beyond Clouds: The framework assumes computational re-

sources are available not only from existing cloud computing services, but also from

volunteer computing [125], computing platforms incentivised by crytpocurrency such

as Gridcoin [126], and emerging fog computing nodes [127].

• Flexible Processing Models: The framework supports both batch and stream pro-

cessing models just as supported in Flink [9].

• QoS: The framework accepts QoS criteria from the user in terms of end-to-end pro-

cessing latency or throughput.

Geo-spatial data processing has been studied in the contexts of minimizing response

times [128], using volunteer resources [129], and trading timeliness for accuracy in stream-

ing [130]. However, QoS-aware elastic geo-spatial data processing is not fully explored.

Potential research challenges include the following:

Application Performance Modeling It is challenging to create performance models

for geo-distributed data processing applications running on a highly dynamic environment

113

posed by volunteer and fog computing nodes. Due to the heterogeneity of the nodes, it is not

realistic to run benchmarks for all the nodes in advance. However, it is reasonable to assume

that we can obtain general specifications of the nodes (e.g., memory size, CPU speed) in

advance and estimate the target application’s performance using these general specifications.

Another challenge is estimating latency and dynamically changing bandwidth for arbitrary

application communication topology over wide-area networks. To keep up with dynamically

changing network and resource environments, online machine learning techniques will be

useful to maintain the accuracy of application performance models.

Adaptive Application Reconfiguration Application performance can be improved by

dynamically splitting or merging application tasks [131], or migrating some of the tasks to

idle resources [48], [58]. Since performing these operations over wide-area network can incur

significant performance overhead, we will need to prevent thrashing behaviors (e.g., repeating

splitting and merging operations). Further, depending on the reliability of computing nodes

(e.g., cloud: 99%, volunteer: 60%), we will also need to replicate the same application tasks

and data over multiple distributed locations for better fault-tolerance.

Elastic Resource Allocation To obtain the optimal resource configuration constrained

by a required QoS, it is typical to formulate a combinatorial optimization problem. How-

ever, the number of combinations for multiple heterogeneous node types and application

communication topologies over wide-area networks can be explosive. Thus, solving the op-

timization problem by a single central scheduler may take too long time even to obtain

approximate solutions. Moreover, we need to keep solving new optimization problems re-

peatedly to adapt dynamically changing incoming workloads and network bandwidth. We

have multiple strategies to tackle this problem as follows:

• Develop a heuristic algorithm for the central scheduler that gives us approximate so-

lutions reasonably quickly.

114

• Develop multiple independent decentralized schedulers, where each scheduler makes

resource allocation decisions using local information only.

• Develop cooperative decentralized schedulers that communicate with each other to

exchange their local information.

• Develop a hierarchical scheduler, where a central scheduler interacts with distributed

sub-schedulers and gives them high-level resource allocation objectives.

Since optimal strategy may change depending on the size of the optimization problem and

also the rate of workload changes, we will need to explore these elastic resource allocation

strategies in various data/resource distribution scenarios.

7.2.2 Elastic Resource Allocation for Serverless Computing

As mentioned in Section 1.1.2, the serverless computing service model (i.e., FaaS) frees

users from managing servers. It instead executes a function provided by the FaaS user upon

the reception of an event. FaaS users are charged based on the number of function calls and

the duration of code execution.

Current FaaS providers offer limited resource configuration options to the FaaS user:

AWS Lambda [132] and Microsoft Azure Functions [133] offer different memory sizes (e.g.,

300 Mbytes to 3 Gbytes for AWS Lambda); and Google Cloud Functions [134] offers four

different resource configurations from 128 Mbytes memory and 200 MHz CPU to 2 Gbytes

memory and 2.4 GHz CPU. Thus, the FaaS user’s ability to control application performance

is limited. However, we can still create an application execution time model for several

different resource configurations and use the model to dynamically adapt the resource con-

figuration to fluctuating workloads.

FaaS providers implement an elastic resource scheduling framework underneath the

FaaS layer as shown in Figure 1.1. From the FaaS provider perspective, the FaaS model

gives an opportunity to consolidate more workloads into fewer physical machines since each

115

function call is independent and more fine-grained compared to VMs. There are research

opportunities to efficiently consolidate parallel function calls requested by multiple users,

where each function has different resource usage requirements and execution time.

7.2.3 Improvements to Presented Techniques

Reconfiguration Costs-Aware Scheduling VM scheduling simulation results for elastic

data stream processing in Figure 6.9 showed that the proposed scheduling method success-

fully kept the amount of backlog low. The simulation took VM startup time into account,

but not the cost for reconfiguration. In practice, however, when reconfiguring a stream

application, stream processing systems need to stop consuming data [6], [34], [35]. Thus,

throughput can be significantly decreased during reconfiguration. Depending on the data

rate of input streams, backlog may be accumulated quickly. For example, if we stop consum-

ing stream data of 10 Mbytes/sec for one minute, it takes 600 Mbytes of storage space in

the message broker. Heinze et al. proposed a scheduling technique which tries to minimize

latency spikes caused by reconfigurations [35]. However, their technique remains reactive. If

the scheduler reacts to short-term input data rate spikes, it is possible to cause thrashing

behavior of reconfigurations. For more robust VM scheduling, the scheduler should be aware

of backlog (or latency) and make proactive scheduling decisions that follow long-term trends

of workloads.

Uncertainty Quantification In Chapter 6, we considered uncertainty for MST prediction

models. As the result of using linear regression, we estimated a single variance value from

all the MST samples that we used to train a model (see Eq. (6.6)). However, variance of

actual MST samples varies depending on the number of VMs as we can confirm in Figure 6.4.

Since our proposed uncertainty-aware VM scheduling is generally applicable even if different

variance is defined for each VM count, using different variance for each VM count can better

reflect the true performance of applications and lead to a better QoS satisfaction. To quantify

uncertainty for each different VM count, we can use techniques such as Gaussian Process

116

Regression or Kriging, where we can predict MST values while continuously interpolate

uncertainty.

REFERENCES

[1] M. Armbrust et al., “Above the clouds: A Berkeley view of cloud computing,” EECS
Department, University of California, Berkeley, CA, Tech. Rep. UCB/EECS-2009-
28, 2009, [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-28.pdf, Accessed on: April 18, 2018.

[2] Apache Software Foundation. Apache Hadoop. (2014) [Online]. Available: http://
hadoop.apache.org/, Accessed on: March 8, 2018.

[3] M. Zaharia, M. Chowdhury, T. Das, and A. Dave, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proc. USENIX Symp.
on Networked Syst. Design and Implementation (NSDI 12), 2012, pp. 15–28.

[4] S. Imai, R. Klockowski, and C. A. Varela, “Self-healing spatio-temporal data streams
using error signatures,” in Proc. Int. Conf. on Big Data Science and Eng. (BDSE 13),
2013, pp. 957–964.

[5] M. Solaimani, M. Iftekhar, L. Khan, B. Thuraisingham, and J. B. Ingram, “Spark-
based anomaly detection over multi-source vmware performance data in real-time,” in
Proc. IEEE Symp. on Computational Intell. in Cyber Security (CICS 14), 2014, pp.
1–8.

[6] A. Toshniwal et al., “Storm@twitter,” in Proc. ACM SIGMOD Int. Conf. on Manage.
of Data, 2014, pp. 147–156.

[7] T. Z. Fu, J. Ding, R. T. Ma, M. Winslett, Y. Yang, and Z. Zhang, “DRS: dynamic
resource scheduling for real-time analytics over fast streams,” in Proc. IEEE Int. Conf.
on Distrib. Comput. Syst. (ICDCS 15), 2015, pp. 411–420.

[8] A. Martin, A. Brito, and C. Fetzer, “DEBS grand challenge: Real time data analysis
of taxi rides using StreamMine3G,” in Proc. ACM Int. Conf. on Distrib. Event-Based
Syst. (DEBS 15), 2015, pp. 269–276.

[9] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, and K. Tzoumas, “Apache
Flink: Stream and batch processing in a single engine,” IEEE Data Eng. Bull., vol. 38,
no. 4, pp. 28–38, 2015.

[10] Apache Software Foundation. Apache Samza [Online]. Available: http://samza.apache.
org/, Accessed on: March 8, 2018.

[11] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized streams:
Fault-tolerant streaming computation at scale,” in Proc. ACM Symp. on Operating
Syst. Principles (SOSP 13), 2013, pp. 423–438.

117

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://hadoop.apache.org/
http://hadoop.apache.org/
http://samza.apache.org/
http://samza.apache.org/

118

[12] P. Mell and T. Grance, “The NIST definition of cloud computing,” National
Institute of Standards and Technology, Gaithersburg, MD, Tech. Rep. SP-
800-145, 2011, [Online]. Available: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf, Accessed on: April 18, 2018.

[13] D. Merkel, “Docker: Lightweight Linux containers for consistent development and de-
ployment,” Linux Journal, no. 239, 2014.

[14] M. Roberts, “Serverless architectures,” 2016, [Online]. Available: https://martinfowler.
com/articles/serverless.html, Accessed on: March 8, 2018.

[15] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow, “Blueprint for
the intercloud - Protocols and formats for cloud computing interoperability,” in Proc.
Int. Conf. on Internet and Web Appl. and Services (ICIW 09), 2009, pp. 328–336.

[16] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected cloud computing envi-
ronments,” ACM Computing Surveys, vol. 47, no. 212, pp. 1–47, 2014.

[17] Apache Software Foundation. Apache Libcloud. (2017) [Online]. Available: https://
libcloud.apache.org/, Accessed on: March 8, 2018.

[18] D. Petcu, “Multi-Cloud: Expectations and current approaches,” in Proc. Int. Workshop
on Multi-cloud Appl. and Federated Clouds (MultiCloud 13), 2013, pp. 1–6.

[19] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, “Cloud-based augmentation
for mobile devices: Motivation, taxonomies, and open challenges,” IEEE Commun.
Surveys Tut., vol. 16, no. 1, pp. 337–368, 2014.

[20] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for VM-based
cloudlets in mobile computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23,
2009.

[21] T. Justino and R. Buyya, “Outsourcing resource-intensive tasks from mobile apps to
clouds: Android and aneka integration,” in Proc. IEEE Int. Conf. on Cloud Computing
in Emerging Markets (CCEM 14), 2014, pp. 1–8.

[22] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of auto-scaling tech-
niques for elastic applications in cloud environments,” J. Grid Computing, vol. 12,
no. 4, pp. 559–592, 2014.

[23] Amazon Web Services, “Amazon EC2 service level agreement,” 2018, [Online]. Avail-
able: https://aws.amazon.com/ec2/sla/, Accessed on: March 8, 2018.

[24] S. A. Baset, “Cloud SLAs: present and future,” ACM SIGOPS Operating Syst. Rev.,
vol. 46, no. 2, pp. 57–66, 2012.

[25] R. Buyya, S. K. Garg, and R. N. Calheiros, “SLA-oriented resource provisioning for
cloud computing: Challenges, architecture, and solutions,” in Proc. Int. Conf. on Cloud
and Service Computing (CSC 11), 2011, pp. 1–10.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://libcloud.apache.org/
https://libcloud.apache.org/
https://aws.amazon.com/ec2/sla/

119

[26] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya, “The Aneka platform
and QoS-driven resource provisioning for elastic applications on hybrid clouds,” Future
Generation Comput. Syst., vol. 28, no. 6, pp. 861–870, 2012.

[27] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-optimal scheduling in
hybrid IaaS clouds for deadline constrained workloads,” in Proc. Int. Conf. on Cloud
Computing (CLOUD 10), 2010, pp. 228–235.

[28] S. Imai, T. Chestna, and C. A. Varela, “Accurate resource prediction for hybrid IaaS
clouds using workload-tailored elastic compute units,” in Proc. IEEE/ACM Int. Conf.
on Utility and Cloud Computing (UCC 13), 2013, pp. 171–178.

[29] R. N. Calheiros and R. Buyya, “Cost-effective provisioning and scheduling of deadline-
constrained applications in hybrid clouds,” in Web Inform. Syst. Eng. (WISE 2012).
Charm, Switzerland: Springer, 2012, pp. 171–184.

[30] J. L. Lucas-Simarro, R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente,
“Scheduling strategies for optimal service deployment across multiple clouds,” Future
Generation Comput. Syst., vol. 29, no. 6, pp. 1431–1441, 2013.

[31] P. Lama and X. Zhou, “AROMA: Automated resource allocation and configuration
of mapreduce environment in the cloud,” in Proc. ACM Int. Conf. on Autonomic
Computing (ICAC 12), 2012, pp. 63–72.

[32] K. Chen, J. Powers, S. Guo, and F. Tian, “CRESP: Towards optimal resource pro-
visioning for MapReduce computing in public clouds,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 6, pp. 1403–1412, 2014.

[33] T. Bicer, D. Chiu, and G. Agrawal, “Time and cost sensitive data-intensive comput-
ing on hybrid clouds,” in Proc. IEEE/ACM Int. Symp. on Cluster, Cloud and Grid
Computing (CCGrid 12), 2012, pp. 636–643.

[34] A. Ishii and T. Suzumura, “Elastic stream computing with clouds,” in Proc. IEEE Int.
Conf. on Cloud Computing (CLOUD 11), 2011, pp. 195–202.

[35] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-aware elastic scaling
for distributed data stream processing systems,” in Proc. ACM Int. Conf. on Distrib.
Event-Based Syst. (DEBS 14), 2014, pp. 13–22.

[36] B. Lohrmann, P. Janacik, and O. Kao, “Elastic stream processing with latency guar-
antees,” in Proc. IEEE Int. Conf. on Distrib. Comput. Syst. (ICDCS 15), 2015, pp.
399–410.

[37] S. Imai, S. Patterson, and C. A. Varela, “Uncertainty-aware elastic virtual machine
scheduling for stream processing systems,” in Proc. IEEE/ACM Int. Symp. on Cluster,
Cloud and Grid Computing (CCGrid 18), 2018, to appear.

120

[38] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds,” Future Generation Com-
put. Syst., vol. 29, no. 1, pp. 158–169, 2013.

[39] L. F. Bittencourt and E. R. M. Madeira, “HCOC: A cost optimization algorithm for
workflow scheduling in hybrid clouds,” J. Internet Services and Appl., vol. 2, no. 3,
pp. 207–227, 2011.

[40] T. A. Genez, L. F. Bittencourt, and E. R. Madeira, “Workflow scheduling for
SaaS/PaaS cloud providers considering two SLA levels,” in Proc. IEEE Netw. Op-
erations and Manage. Symp. (NOMS 12), 2012, pp. 906–912.

[41] M. A. Rodriguez and R. Buyya, “Deadline based resource provisioning and scheduling
algorithm for scientific workflows on clouds,” IEEE Trans. Cloud Comput., vol. 2, no. 2,
pp. 222–235, 2014.

[42] Amazon Web Services. AWS Auto Scaling. (2018) [Online]. Available: https://aws.
amazon.com/autoscaling/, Accessed on: March 8, 2018.

[43] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre, and I. Truck, “Using
reinforcement learning for autonomic resource allocation in clouds: Towards a fully
automated workflow,” in Proc. Int. Conf. on Autonomic and Autonomous Syst. (ICAS
11), 2011, pp. 67–74.

[44] E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement learning towards au-
tomating resource allocation and application scalability in the cloud,” Concurrency
and Computation: Practice and Experience, vol. 25, no. 12, pp. 1656–1674, 2013.

[45] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis:
Forecasting and Control. New York, NY: John Wiley & Sons, 2015.

[46] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao et al., “Energy-aware server
provisioning and load dispatching for connection-intensive internet services.” in Proc.
USENIX Symp. on Networked Syst. Design and Implementation (NSDI 08), 2008, pp.
337–350.

[47] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud using predic-
tive models for workload forecasting,” in Proc. IEEE Int. Conf. on Cloud Computing
(CLOUD 11), 2011, pp. 500–507.

[48] S. Imai, T. Chestna, and C. A. Varela, “Elastic scalable cloud computing using
application-level migration,” in Proc. IEEE/ACM Int. Conf. on Utility and Cloud
Computing (UCC 12), 2012, pp. 91–98.

[49] S. Imai, S. Patterson, and C. A. Varela, “Elastic virtual machine scheduling for con-
tinuous air traffic optimization,” in Proc. IEEE/ACM Int. Symp. on Cluster, Cloud
and Grid Computing (CCGrid 16), 2016, pp. 183–186.

https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/

121

[50] ——, “Cost-efficient elastic stream processing using application-agnostic performance
prediction,” in Proc. IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing
(CCGrid 16): Doctoral Symp., 2016, pp. 604–607, Best doctoroal symposium paper
award.

[51] ——, “Maximum sustainable throughput prediction for large-scale data streaming sys-
tems,” Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY,
Tech. Rep., 2017, Extended journal version of [118] in review. [Online]. Available:
http://wcl.cs.rpi.edu/papers/mst2017.pdf, Accessed on: April 18, 2018.

[52] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M. Rosenblum,
“Optimizing the migration of virtual computers,” in Proc. ACM Symp. on Operating
Syst. Design and Implementation (OSDI 02), 2002, pp. 377–390.

[53] C. Clark et al., “Live migration of virtual machines,” in Proc. USENIX Symp. on
Networked Syst. Design and Implementation (NSDI 05), 2005, pp. 273–286.

[54] Hansen, J. Gorm, and E. Jul, “Self-migration of operating systems,” in Proc. 11th
ACM SIGOPS European Workshop (EW 11), 2004, p. 23.

[55] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent migration for virtual ma-
chines,” in Proc. USENIX Annu. Tech. Conf. (ATEC 05), 2005, pp. 391–394.

[56] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif, “Sandpiper: Black-box
and gray-box resource management for virtual machines.” Computer Networks, vol. 53,
no. 17, pp. 2923–2938, 2009.

[57] C. A. Varela and G. Agha, “Programming dynamically reconfigurable open systems
with SALSA,” ACM SIGPLAN Notices. OOPSLA’2001 Intriguing Tech. Track Proc.,
vol. 36, no. 12, pp. 20–34, 2001.

[58] K. E. Maghraoui, T. Desell, B. K. Szymanski, and C. A. Varela, “The Internet Operat-
ing System: Middleware for adaptive distributed computing,” Int. J. High Performance
Computing Appl., Special Issue on Scheduling Techniques for Large-Scale Distrib. Plat-
forms, vol. 20, no. 4, pp. 467–480, 2006.

[59] Q. Wang and C. A. Varela, “Impact of cloud computing virtualization strategies on
workloads’ performance,” in Proc. IEEE/ACM Int. Conf. on Utility and Cloud Com-
puting (UCC 11), 2011, pp. 130–137.

[60] S. Imai and C. A. Varela, “Light-weight adaptive task offloading from smartphones
to nearby computational resources,” in Proc. ACM Research in Applied Computation
Symp. (RACS 11), 2011.

[61] Amazon Web Services, “Amazon EC2 FAQ,” 2018, [Online]. Available: http://aws.
amazon.com/ec2/faqs/, Accessed on: March 8, 2018.

[62] T. Desell, K. E. Maghraoui, and C. A. Varela, “Malleable applications for scalable high
performance computing,” Cluster Computing, vol. 10, no. 3, pp. 323–337, 2007.

http://wcl.cs.rpi.edu/papers/mst2017.pdf
http://aws.amazon.com/ec2/faqs/
http://aws.amazon.com/ec2/faqs/

122

[63] International Air Transport Association (IATA), “New IATA Passenger Forecast Re-
veals Fast-Growing Markets of the Future,” [Online]. Available: http://www.iata.org/
pressroom/pr/pages/2014-10-16-01.aspx, Accessed on: April 10, 2018.

[64] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity. Upper Saddle River, NJ: Prentice-Hall, 1982.

[65] GE, “GE Flight Quest Challenge 2,” 2018, [Online]. Available: http://www.gequest.
com/c/flight2-final/data, Accessed on: March 8, 2018.

[66] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods for network
utility maximization,” IEEE J. Selected Areas in Commun., vol. 24, no. 8, pp. 1439–
1451, 2006.

[67] Y. Cao and D. Sun, “A link transmission model for air traffic flow management,” J.
Guidance, Control, and Dynamics, vol. 34, no. 5, pp. 1342–1351, 2011.

[68] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,”
Commun. of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[69] Y. Cao and D. Sun, “Migrating large-scale air traffic modeling to the cloud,” J.
Aerospace Inform. Syst., vol. 12, no. 2, pp. 257–266, 2015.

[70] FlightAware, “FlightAware,” 2018, [Online]. Available: http://flightaware.com/, Ac-
cessed on: March 8, 2018.

[71] Amazon Web Services, “Amazon EC2,” 2018, [Online]. Available: https://aws.amazon.
com/ec2/, Accessed on: March 8, 2018.

[72] Apache Software Foundation. Apache Spark. (2018) [Online]. Available: http://spark.
apache.org/, Accessed on: March 8, 2018.

[73] LGPL open source project. lp solve: Linear Integer Programming Solver [Online].
Available: http://lpsolve.sourceforge.net/, Accessed on: March 8, 2018.

[74] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade, “Performance characterization
of in-memory data analytics on a modern cloud server,” in Proc. Int. Conf. on Big
Data and Cloud Computing (BDCloud 15), 2015, pp. 1–8.

[75] S. L. Olivier, B. R. De Supinski, M. Schulz, and J. F. Prins, “Characterizing and
mitigating work time inflation in task parallel programs,” Scientific Programming,
vol. 21, no. 3-4, pp. 123–136, 2013.

[76] Yiyuan Zhao and Joachim K. Hochwarth and Adrianne A. Hersrud, “Compre-
hensive dynamic air traffic system simulation (ComDATSS),” [Online]. Available:
https://www.aem.umn.edu/research/atc/projects/ComDATSS/, Accessed on: March
8, 2018.

[77] J.-F. Cordeau, P. Toth, and D. Vigo, “A survey of optimization models for train routing
and scheduling,” Transportation Science, vol. 32, no. 4, pp. 380–404, 1998.

http://www.iata.org/pressroom/pr/pages/2014-10-16-01.aspx
http://www.iata.org/pressroom/pr/pages/2014-10-16-01.aspx
http://www.gequest.com/c/flight2-final/data
http://www.gequest.com/c/flight2-final/data
http://flightaware.com/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
http://spark.apache.org/
http://spark.apache.org/
http://lpsolve.sourceforge.net/
https://www.aem.umn.edu/research/atc/projects/ComDATSS/

123

[78] C. Papahristodoulou and E. Dotzauer, “Optimal portfolios using linear programming
models,” J. Operational Research Society, vol. 55, no. 11, pp. 1169–1177, 2004.

[79] T. Lu and C. Boutilier, “Dynamic segmentation for large-scale marketing optimiza-
tion,” in Workshop on Customer Life-Time Value Optimization in Digital Marketing,
2014, pp. 21–26.

[80] Z. Abrams, O. Mendelevitch, and J. Tomlin, “Optimal delivery of sponsored search
advertisements subject to budget constraints,” in Proc. ACM Conf. on Electronic Com-
merce (EC 07), 2007, pp. 272–278.

[81] A. Biem et al., “Real-time traffic information management using stream computing,”
IEEE Data Eng. Bull., vol. 33, no. 2, pp. 64–68, 2010.

[82] C. Hochreiner, M. Vögler, S. Schulte, and S. Dustdar, “Elastic stream processing for
the internet of things,” in Proc. IEEE Int. Conf. on Cloud Computing (CLOUD 16),
2016, pp. 100–107.

[83] C. Hochreiner, S. Schulte, S. Dustdar, and F. Lécué, “Elastic stream processing for
distributed environments,” IEEE Internet Comput., vol. 19, pp. 54–59, 2015.

[84] A. Shukla and Y. Simmhan, “Benchmarking distributed stream processing platforms
for IoT applications,” in Technology Conf. on Performance Evaluation and Bench-
marking (TPCTC 16), 2016, pp. 90–106.

[85] Apache Software Foundation. Apache Storm. (2015) [Online]. Available: http://storm.
apache.org/, Accessed on: March 8, 2018.

[86] ——. Apache Flink. (2017) [Online]. Available: http://flink.apache.org/, Accessed on:
March 8, 2018.

[87] M. D. de Assuncao, A. D. S. Veith, and R. Buyya, “Distributed data stream processing
and edge computing: A survey on resource elasticity and future directions,” J. Netw.
and Computer Appl., vol. 103, pp. 1–17, 2018.

[88] B. Satzger, W. Hummer, P. Leitner, and S. Dustdar, “Esc: Towards an elastic stream
computing platform for the cloud,” in Proc. IEEE Int. Conf. on Cloud Computing
(CLOUD 11), 2011, pp. 348–355.

[89] T. Li, J. Tang, and J. Xu, “A predictive scheduling framework for fast and distributed
stream data processing,” in Proc. IEEE Int. Conf. on Big Data, 2015, pp. 333–338.

[90] S. A. Noghabi et al., “Samza: stateful scalable stream processing at LinkedIn,” Proc.
of the VLDB Endowment, vol. 10, no. 12, pp. 1634–1645, 2017.

[91] Apache Software Foundation. Apache Spark Streaming. (2018) [Online]. Available:
http://spark.apache.org/streaming/, Accessed on: March 8, 2018.

[92] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining global states of
distributed systems,” ACM Trans. on Comput. Syst., vol. 3, no. 1, pp. 63–75, 1985.

http://storm.apache.org/
http://storm.apache.org/
http://flink.apache.org/
http://spark.apache.org/streaming/

124

[93] J. Kreps, N. Narkhede, and J. Rao, “Kafka : A distributed messaging system for
log processing,” in Proc. ACM SIGMOD Workshop on Networking Meets Databases
(NETDB 11), 2011, pp. 1–7.

[94] V. K. Vavilapalli et al., “Apache Hadoop YARN: Yet another resource negotiator,” in
Proc. ACM Annu. Symp. on Cloud Computing (SOCC 13), 2013, pp. 1–16.

[95] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing in the data cen-
ter,” in Proc. USENIX Symp. on Networked Syst. Design and Implementation (NSDI
11), 2011, pp. 295–308.

[96] Apache Samza, “SAMZA-348: Configuring Samza jobs through a stream,” [Online].
Available: https://issues.apache.org/jira/browse/SAMZA-348, Accessed on: March 8,
2018.

[97] Apache Spark, “SPARK-12133: Support dynamic allocation in Spark Streaming,” [On-
line]. Available: https://issues.apache.org/jira/browse/SPARK-12133., Accessed on:
March 8, 2018.

[98] R. B. Cooper, Introduction to Queueing Theory, 2nd ed. New York, NY: Elsevier
North Holland, 1981.

[99] K. Teknomo, “Queuing theory tutorial,” 2017, [Online]. Available: http://people.
revoledu.com/kardi/tutorial/Queuing/, Accessed on: March 8, 2018.

[100] J. F. C. Kingman, “The single server queue in heavy traffic,” Mathematical Proc.
Cambridge Philosophical Society, vol. 57, no. 4, pp. 902–904, 1961.

[101] B. Gedik, S. Schneider, M. Hirzel, and K. L. Wu, “Elastic scaling for data stream
processing,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 6, pp. 1447–1463, 2014.

[102] J. Xu, Z. Chen, J. Tang, and S. Su, “T-storm: Traffic-aware online scheduling in storm,”
in Proc. Int. Conf. on Distrib. Comput. Syst. (ICDCS 14), 2014, pp. 535–544.

[103] L. Xu, B. Peng, and I. Gupta, “Stela: Enabling stream processing systems to scale-in
and scale-out on-demand,” in Proc. IEEE Int. Conf. on Cloud Eng. (IC2E 16), 2016,
pp. 22–31.

[104] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest: Efficient
performance prediction for large-scale advanced analytics,” in Proc. USENIX Symp.
on Networked Syst. Design and Implementation (NSDI 16), 2016, pp. 363–378.

[105] G. Mariani, A. Anghel, R. Jongerius, and G. Dittmann, “Predicting cloud performance
for HPC applications: A user-oriented approach,” in Proc. IEEE/ACM Int. Symp. on
Cluster, Cloud and Grid Computing (CCGrid 17), 2017, pp. 524–533.

[106] Intel Corporation. Storm Benchmark. (2018) [Online]. Available: https://github.com/
intel-hadoop/storm-benchmark/, Accessed on: March 8, 2018.

https://issues.apache.org/jira/browse/SAMZA-348
https://issues.apache.org/jira/browse/SPARK-12133.
http://people.revoledu.com/kardi/tutorial/Queuing/
http://people.revoledu.com/kardi/tutorial/Queuing/
https://github.com/intel-hadoop/storm-benchmark/
https://github.com/intel-hadoop/storm-benchmark/

125

[107] A. Verma, L. Cherkasova, and R. Campbell, “ARIA: Automatic resource inference
and allocation for mapreduce environments,” in Proc. ACM Int. Conf. on Autonomic
Computing (ICAC 11), 2011, pp. 235–244.

[108] Microsoft, “Measuring maximum sustainable engine throughput,” [Online]. Avail-
able: https://msdn.microsoft.com/en-us/library/cc296884(v=bts.10).aspx, Accessed
on: March 8, 2018.

[109] C. Davatz, C. Inzinger, J. Scheuner, and P. Leitner, “An approach and case study of
cloud instance type selection for multi-tier web applications,” in Proc. IEEE/ACM Int.
Symp. on Cluster, Cloud and Grid Computing (CCGrid 17), 2017, pp. 534–543.

[110] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from Data. New
York, NY: AMLBook, 2012.

[111] Luis Martin Garcia. TCPDUMP/LIBPCAP Public Repository. (2017) [Online]. Avail-
able: http://www.tcpdump.org/, Accessed on: March 8, 2018.

[112] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “CloudSim:
A toolkit for modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms,” Software: Practice and Experience, vol. 41, no. 1,
pp. 23–50, 2011.

[113] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “SkewTune: Mitigating skew in mapre-
duce applications,” in Proc. ACM SIGMOD Conf. on Manage. of Data, 2012, pp.
25–36.

[114] C. Delimitrou and C. Kozyrakis, “HCloud: Resource-efficient provisioning in shared
cloud systems,” in ACM SIGOPS Operating Syst. Rev., 2016, vol. 50, no. 2, pp. 473–
488.

[115] N. Rameshan, Y. Liu, L. Navarro, and V. Vlassov, “Augmenting elasticity controllers
for improved accuracy,” in Proc. IEEE Conf. on Autonomic Computing (ICAC 16),
2016, pp. 117–126.

[116] R. Hu, J. Jiang, G. Liu, and L. Wang, “KSwSVR: A new load forecasting method for
efficient resources provisioning in cloud,” in Proc. IEEE Conf. on Services Computing
(SCC 13), 2013, pp. 120–127.

[117] J. Jiang, J. Lu, G. Zhang, and G. Long, “Optimal cloud resource auto-scaling for web
applications,” in Proc. IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing
(CCGrid 13), 2013, pp. 58–65.

[118] S. Imai, S. Patterson, and C. A. Varela, “Maximum sustainable throughput prediction
for data stream processing over public clouds,” in Proc. IEEE/ACM Int. Symp. on
Cluster, Cloud and Grid Computing (CCGrid 17), 2017, pp. 504–513.

https://msdn.microsoft.com/en-us/library/cc296884(v=bts.10).aspx
http://www.tcpdump.org/

126

[119] Y. Liu, N. Rameshan, E. Monte, V. Vlassov, and L. Navarro, “ProRenaTa: Proactive
and reactive tuning to scale a distributed storage system,” in Proc. IEEE Symp. on
Cluster, Cloud and Grid Computing (CCGrid 15), 2015, pp. 453–464.

[120] G. D. F. Morales and A. Bifet, “SAMOA: Scalable advanced massive online analysis,”
J. Mach. Learning Res., vol. 16, pp. 149–153, 2015.

[121] M. Arlitt and T. Jin, “A workload characterization study of the 1998 world cup web
site,” IEEE Netw., vol. 14, no. 3, pp. 30–37, 2000.

[122] Twitter. Twitter API Reference. (2018) [Online]. Available: https://dev.twitter.com/
docs, Accessed on: March 8, 2018.

[123] ADS-B Exchange, “ADS-B Exchange - world’s largest co-op of unfiltered filght data,”
2018, [Online]. Available: https://www.adsbexchange.com/, Accessed on: March 8,
2018.

[124] R. Buyya et al., “A manifesto for future generation cloud computing: Research di-
rections for the next decade,” arXiv:1711.09123 [cs.DC], 2017, [Online]. Available:
https://arxiv.org/abs/1711.09123, Accessed on: April 19, 2018.

[125] D. P. Anderson, E. Korpela, and R. Walton, “High-performance task distribution for
volunteer computing,” in Int. Conf. on e-Science and Grid Computing (e-Science 05),
2005, pp. 196–203.

[126] Gridcoin community, “Gridcoin,” [Online]. Available: https://gridcoin.us/, Accessed
on: April 10, 2018.

[127] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. S. Goren, and C. Mahmoudi,
“Fog computing conceptual model,” National Institute of Standards and Technology,
Gaithersburg, MD, Tech. Rep. SP-500-325, 2018.

[128] Q. Pu et al., “Low latency geo-distributed data analytics,” ACM SIGCOMM Comput.
Commun. Rev., vol. 45, no. 4, pp. 421–434, 2015.

[129] A. Jonathan, M. Ryden, K. Oh, A. Chandra, and J. Weissman, “Nebula: Distributed
edge cloud for data intensive computing,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 11, pp. 3229–3242, 2017.

[130] B. Heintz, A. Chandra, and R. K. Sitaraman, “Trading timeliness and accuracy in geo-
distributed streaming analytics,” in Proc. ACM Symp. on Cloud Computing (CLOUD
16), 2016, pp. 361–373.

[131] K. E. Maghraoui, T. Desell, B. K. Szymanski, and C. A. Varela, “Malleable iterative
mpi applications,” Concurrency and Computation: Practice and Experience, vol. 21,
no. 3, pp. 393–413, 2009.

[132] Amazon Web Services. AWS Lambda. (2018) [Online]. Available: https://aws.amazon.
com/lambda/, Accessed on: April 10, 2018.

https://dev.twitter.com/docs
https://dev.twitter.com/docs
https://www.adsbexchange.com/
https://arxiv.org/abs/1711.09123
https://gridcoin.us/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/

127

[133] Microsoft. Microsoft Azure Functions. (2018) [Online]. Available: https://azure.
microsoft.com/en-us/services/functions/, Accessed on: April 11, 2018.

[134] Google. Google Cloud Functions [Online]. Available: https://cloud.google.com/
functions/, Accessed on: April 10, 2018.

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/

APPENDIX A

Peak Calculations for Model 1

We take the derivative of f1 in Eq. (5.2) to find when f1 gets to its peak.

∂f1

∂m
=

∂

∂m

(
1

w0 + w1 · 1
m

+ w2 ·m+ w3 ·m2

)
. (A.1)

Using the chain rule with u = w0 + w1 · 1
m

+ w2 · m + w3 · m2, Eq. (A.1) can be further

calculated as follows:

∂f1

∂m
=

∂

∂u

(
1

u

)
· ∂u
∂m

= − 1

u2
·
(
−w1

m2
+ w2 + 2w3m

)
=

1

u2
· w1 − w2m

2 − 2w3m
3

m2

=
w1 −m2(w2 + 2w3m)

(um)2

=
w1 −m2(w2 + 2w3m)(

(w0 + w1 · 1
m

+ w2 ·m+ w3 ·m2) ·m
)2

=
w1 −m2(w2 + 2w3m)

(w0 ·m+ w1 + w2 ·m2 + w3 ·m3)2
. (A.2)

From the trained results for Model 1 in Table 5.2, we have only two cases where f1 can

have a peak: 1) w2 = 0 and w3 6= 0, and 2) w3 6= 0 and w2 = 0. For these two cases, we

calculate the peaks of f1 as follows:

1. For w2 = 0 and w3 6= 0, we find when the slope (A.2) is zero:

∂f1

∂m
=

w1 − 2w3m
3

(w0 ·m+ w1 + w3 ·m3)2
= 0 (A.3)

m∗ =

(
w1

2w3

) 1
3

if w0

(
w1

2w3

) 1
3

+
3

2
w1 6= 0. (A.4)

128

129

2. For the case w2 6= 0 and w3 = 0, we find when the slope (A.2) is zero:

∂f1

∂m
=

w1 − w2m
2

w0 ·m+ w1 + w2 ·m2
= 0 (A.5)

m∗ =

√
w1√
w2

if
√
w2 6= 0 and w0

√
w1√
w2

+ 2w1 6= 0. (A.6)

	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENT
	ABSTRACT
	Introduction
	Background of Cloud Elasticity
	Data Processing Models
	Cloud Service Models
	Cloud Deployment Types
	QoS-Aware Elastic Resource Allocation
	Scheduling Techniques

	Contributions
	Outline

	Elastic Batch Data Processing
	Auto-Scaling Using Application-Level Migration
	Introduction
	Cloud Operating System
	Experiments
	Summary

	Cost-Optimal Heterogeneous Virtual Machine Scheduling over Hybrid Clouds
	Introduction
	Workload-Tailored Elastic Compute Unit
	VM Scheduling Algorithm
	Experiments
	Summary

	Elastic Micro-Batch Data Processing
	Introduction
	Air Traffic Management Problem
	Problem Formulation
	Lagrangean Decomposition

	Elastic Air Traffic Management Middleware
	Background
	Application Implementation
	Middleware Architecture

	Virtual Machine Scheduling
	Performance Characterization of ILP Optimization
	Resource Prediction Model
	Elastic Scheduling Algorithms
	Baseline Scheduling
	Speculative Scheduling
	VM Allocation Policy

	Evaluation
	Experimental Settings
	Elastic Behavior Confirmation
	Nationwide Dataset
	Dallas Dataset

	Comparison with Static Scheduling
	Comparison with Auto Scaling

	Summary

	Sustainable Elastic Stream Data Processing
	Introduction
	Background of Elastic Stream Processing
	Distributed Stream Processing Systems
	Comparison of Distributed Stream Processing Systems
	Scaling Stream Processing Applications

	Elastic Stream Processing Systems
	Performance Metrics
	Summary of Elastic Stream Processing Systems

	A Framework for Sustainable Elastic Stream Data Processing
	Maximum Sustainable Throughput
	Sustainable Elastic Stream Data Processing Framework

	Summary

	Maximum Sustainable Throughput Prediction
	Introduction
	Related Work
	MST Prediction Framework
	Linear Regression
	Framework Overview
	MST Prediction Models
	Phase 1: VM Subset Selection
	VM Subset Selection Method
	VM Subset Selection Results

	Phase 2: Model Training & Selection

	Evaluation of MST Prediction
	Discussion
	Summary

	Uncertainty-Aware Elastic Virtual Machine Scheduling
	Introduction
	Formulation of VM Scheduling Problem
	VM Scheduling Techniques
	Baseline MST
	Online Model Learning
	Uncertainty-Awareness for MST
	Uncertainty-Awareness for Workload Forecasting
	Workload Forecasting
	Highest Workload Estimation
	VM Scheduling

	Uncertainty-Awareness for both MST and Workload Forecasting

	Evaluation Setup
	Test Applications and Workloads
	Offline MST Model Training
	Workload Forecasting Model Training

	Evaluation
	Common Experimental Settings
	Simulation Time Horizon
	Workloads and Test Applications
	Hypothetical Ground Truth MST
	Baseline Scheduling
	Evaluation Metrics

	Evaluation: Scheduling Policy vs. QoS & Cost
	Experimental Settings
	Scheduling Results

	Evaluation: QoS Satisfaction Target vs. QoS & Cost
	VM Allocation Sequence

	Related Work
	Summary

	Conclusion and Future Directions
	Chapter Summary
	Future Directions
	Future Elastic Resource Allocation Framework
	Elastic Resource Allocation for Serverless Computing
	Improvements to Presented Techniques

	REFERENCES
	Peak Calculations for Model 1

