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Abstract In sensor-based systems, spatio-temporal

data streams are often related in non-trivial ways. For

example in avionics, while the airspeed that an aircraft

attains in cruise phase depends on the weight it carries,

it also depends on many other factors such as engine

inputs, angle of attack, and air density. It is therefore a

challenge to develop failure models that can help recog-

nize errors in the data, such as an incorrect fuel quan-

tity or an incorrect airspeed. In this paper, we present

a highly-declarative programming framework that fa-

cilitates the development of self-healing avionics appli-

cations, which can detect and recover from data errors.

Our programming framework enables specifying expert-

created failure models using error signatures, as well

as learning failure models from data. To account for

unanticipated failure modes, we propose a new dynamic
Bayes classifier, that detects outliers and upgrades them

to new modes when statistically significant. We evalu-

ate error signatures and our dynamic Bayes classifier

for accuracy, response time, and adaptability of error

detection. While error signatures can be more accurate

and responsive than dynamic Bayesian learning, the lat-

ter method adapts better due to its data-driven nature.

Keywords data streaming, spatio-temporal data,

declarative programming, linear regression, Bayesian

statistics.
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1 Introduction

Detecting and recognizing patterns in data streams gen-

erated by multiple aircraft sensors has become an im-

portant research area for flight safety. In the Air France

flight 447 (AF447) accident in 2009, iced pitot tubes

caused an error in air speed data, and the pilots failed

to react correctly, leading to the crash [6]. While there

has been a large body of work on fault detection, isola-

tion, and reconfiguration (FDIR) [14], information fu-

sion [5], and anomaly detection [28,27,4,10], there is

still a need for further research in methods that allow

for fault detection and recovery techniques to be easily

realized and implemented with minimal risk of software

errors [15]. To facilitate the development of such self-

healing flight systems that embody the DDDAS [9] con-

cept, we have been developing the ProgrammIng Lan-

guage for spatiO-Temporal data Streaming applications

(PILOTS) and its runtime system for fault detection

and correction in data streams [19,20,25,17,16,8,15].

For the AF447 accident, we successfully developed

a PILOTS program that detects the incorrect airspeed

and estimates the correct airspeed from ground speed

and wind speed [17]. As part of the PILOTS program,

we manually created a failure model in the form of error

signatures, which are used to identify error patterns.

However, there are some cases where creating failure

models is non-trivial. For example, in the Tuninter 1153

(TU1153) flight accident in 2005, the fuel quantity in-

dicator of a different aircraft model was erroneously in-

stalled, causing the instrument to display an incorrect

amount of fuel, which led to fuel exhaustion of the air-

craft [31]. This accident could have been avoided if the

weight error could be detected by checking the relation-

ship between lift and weight during the cruise phase of

flight. Lift depends on airspeed, air density, wing sur-
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face area, and coefficient of lift. The coefficient of lift it-

self depends on the angle of attack and this relationship

can change with different aircraft types. Understanding

such complex relationships from multiple sensor data

streams is critical to accurately detecting sensor faults.

As we have seen in the AF447 and TU1153 acci-

dents, there are failure models with different complex-

ities. Thus, it is preferred to take different modeling

approaches depending on the complexity of the target

failure model. We consider two modeling approaches for

self-healing data streaming systems: 1) models created

by domain experts and 2) models learned from data.

While we use error signatures for the former, we apply

machine learning (ML) techniques to the latter. Specific

research questions include the following:

RQ1 How to design a programming language for self-

healing data streaming systems that supports both

(i) models created by domain experts, and (ii) mod-

els learned from data?

RQ2 How to support data-driven machine learning of

failure models in such a programming language?

RQ3 Since it is not possible to predict every failure

mode, can we support dynamic data-driven learning

of unanticipated failure modes?

In this paper, we propose a programming frame-

work for self-healing data streaming applications which

supports (i) detecting sensor faults from data, (ii) es-

timating new values for associated streams when pos-

sible, and (iii) dynamic data-driven learning of failure

modes. The proposed framework addresses the research

questions as follows. For the first question, we take a

domain-specific approach to enable high-level descrip-

tion of both error signatures and ML-based failure mod-

eling in the PILOTS programming language. We use

separate abstractions for model learning and prediction

for separation of concerns. Also, we provide a succinct

declarative grammar for ease of use. For the second

question:

– We integrate an existing ML framework into our

PILOTS runtime infrastructure. For modularity, we

define a general interface to access ML functionali-

ties from the main PILOTS system.

– We support online/offline ML algorithms for classi-

fication and regression.

For the third question, to detect statistically significant

new modes online in addition to pre-existing modes that

are already learned offline, we develop a new dynamic

Bayes classifier that extends a naive Gaussian Bayes

classifier.

To illustrate the usage of our proposed framework,

we analyze two real-world commercial accidents as case

studies, namely the AF447 and TU1153 accidents. We

apply our dynamic Bayes classifier to both accidents to

detect outliers as new modes using unsupervised learn-

ing. In summary, our contributions are as follows:

– A highly-declarative programming framework to use

machine learning algorithms and learn failure mod-

els for self-healing data stream processing.

– A new dynamic Bayes classifier: a naive Bayes based

classifier that dynamically recognizes statistically

significant new modes in addition to pre-existing

modes.

– Evaluation of the proposed framework with real-

world data and synthetic data from actual commer-

cial flight accidents. Using these data, we success-

fully detected pitot tube and fuel quantity indicator

faults and estimated new values for associated air-

speed and weight streams.

The rest of the paper is organized as follows. Sec-

tion 2 introduces spatio-temporal data stream process-

ing implemented by the core component of PILOTS.

Section 3 presents a framework for self-healing data

stream processing and describes how we support both

error signatures and machine learning techniques for er-

ror detection and correction. Section 4 introduces our

new dynamic Bayes classifier and online learning. Sec-

tions 5 and 6 discuss the methods and results of the

proposed learning approaches using case studies of air-

plane weight estimation and airspeed estimation. Sec-

tion 7 describes related work. Section 8 discusses po-

tential improvements for PILOTS and future research

directions. Finally, we conclude the paper in Section 9.

2 Spatio-temporal data stream processing

software

Today’s most commonly used programming languages

(e.g., C/C++, Java, PHP, JavaScript, python, etc.) do

not have first-class support for space and time since

they are designed to be general-purpose. The down-

side of the general-purpose approach is the complexity

and size of code. Since these programming languages

are imperative, meaning that we have to use for, if, or

while to control the flow of the programs and explic-

itly handle state, the code can get large and complex

easily. In contrast to the general-purpose approach, if

we know a specific problem domain very well and want

to provide first-class support for key domain concepts

(such as space and time), we can take a domain-specific

approach. Domain-specific languages are less expressive

than general-purpose programming languages; however,

code is more declarative and therefore simpler to write,

read, and reason about. We design PILOTS as a highly-

declarative domain-specific programming language for
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spatio-temporal data stream processing, aiming to pro-

vide a suitable programming environment for data sci-

entists with less programming background.

In this section, we explain the design of our PILOTS

system as spatio-temporal data stream processing soft-

ware. We first show the runtime system followed by

data selection criteria for homogeneous stream process-

ing and compilation of PILOTS programs.

2.1 PILOTS programming language

Using PILOTS, application developers can easily pro-

gram an application that handles spatio-temporal data

streams by writing a high-level (declarative) program

specification. The PILOTS program includes an inputs
section to specify the data streams and how data is to be

extrapolated from heterogeneous data, typically using

declarative data selection criteria (e.g., closest, interpo-
late, euclidean keywords, see Section 2.3 for details). It

includes an outputs section to specify the data streams

to be produced by the application, as a function of the

input streams with a given frequency.

Figure 1 shows one of the simplest programs writ-

ten in PILOTS, called Twice. As the name suggests, it

takes two input streams, aptq and bptq, where b is sup-

posed to be twice as large as a, and outputs an error

defined by e “ pb´ 2 ˚ aq every second. Note that these

two input streams are not associated with any location

information.

�

�

�

�

program Twice;
inputs

a (t) using closest(t);
b (t) using closest(t);

outputs
e: (b - 2 * a) at every 1 sec;

end

Fig. 1 Declarative specification of the Twice PILOTS pro-
gram.

2.2 Core system architecture of PILOTS

Figure 2 shows the core system architecture of the

PILOTS runtime system. The data manager first

takes N raw input spatio-temporal data streams

dipx, y, z, tq, i “ 1, 2, ..., N , which are heterogeneous in

terms of granularity on space and time. The applica-

tion model is derived from a user’s original PILOTS

program, for example, as shown in Figure 1. It requests

the data manager to send data streams at a specified

rate (e.g., every second) with certain data selection

criteria explained in Section 2.3. The data manager

transfers requested data streams d̄iptq, i “ 1, 2, ..., N ,

which are now only functions of time (i.e., homogeneous

streams), and the application module computes output

streams ojptq, j “ 1, 2, ...,M and error streams ekptq,

k “ 1, 2, ..., L specified by an optional errors section (see

Figure 4 for an errors section example).

Whereas spatio-temporal data is available with var-

ious spatial density and time frequency depending on

sources of data in general (e.g., weather forecast data

can be given hourly/daily for a vast geographic area,

GPS data can be given every second or at higher fre-

quency for a specific geographic location), the applica-

tion often needs to process data at a constant frequency.

The data manager essentially allows the application to

view a set of these heterogeneous data streams as a

homogeneous data stream, and therefore enables a sep-

aration of concerns: application programmers can focus

on their application model.
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Fig. 2 System architecture of the core PILOTS runtime sys-
tem.

2.3 Data selection criteria

PILOTS offers the following data selection criteria to

the programmer so that the application can get data

consistently regardless of its heterogeneity. We explain

three data selection methods: closest, euclidean, and in-
terpolate. PILOTS takes a view that the application is

moving in the 3-D space and is provided with the cur-

rent location and time as shown in Figure 2. In the

following, we assume that we are given the current lo-

cation and time as px, y, zq and t respectively.

closest This method takes a 1-D argument from

tx, y, z, tu to find the closest data point to the given

argument. This method is applicable to both space

and time domains.

euclidean This method is an extension of closest to 2-D

Euclidean plane and 3-D Euclidean space. euclidean
takes any combination of two or more arguments
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from tx, y, zu and selects the data point that has the

closest Euclidean distance to the specified point.

interpolate This method takes any combinations of lo-

cations tx, y, zu or time t as arguments to linearly in-

terpolate multiple data points. It also takes another

argument ninterp to specify the maximum closest

data points to interpolate. Suppose we have three 2-

D data points d0px0, y0q, d1px1, y1q, d2px2, y2q, and

ninterp “ 2. If d0 and d1 are the two closest data

points to the current location px, yq, we linearly in-

terpolate d0 and d1.

2.4 Operational modes

There are two operational modes for how to run PI-

LOTS programs.

– real-time mode: This mode is default and is intended

to be used for receiving data from sensors and real-

time processing. If the frequency of an output is

specified as “at every 1 min” in the program spec-

ification, the program actually outputs data once

every 1 minute. Also, in this mode, the program fin-

ishes if one of input data streams sends the last line

marker (\n) or certain amount of time has elapsed,

which can be specified by the user in the command

line as -DtimeSpan=30min.

– simulation mode: This mode is used for simulations

and is activated if the user gives a past time span

in the command line as -DtimeSpan=t0„t1. The PI-

LOTS runtime sets its internal time as t0 and vir-

tually progress the time as the program runs, and

when the internal time reaches t1, the program fin-

ishes. The user can get outputs as fast as possible.
This mode is intended to be used for processing

recorded data in the past.

2.5 Compilation

PILOTS programs are translated into Java code for

platform independent execution. The PILOTS compiler

consists of two parts: a parser and a code generator.

The parser is developed using JavaCC [21]. Depending

on which operational mode (see Section 2.4) is speci-

fied, the compiler generates code either for real-time or

simulation mode. Table 1 shows a comparison of lines

of code between PILOTS and compiled Java programs

for the real-time mode for three programs which we

will show later: Twice (Figure 1), Twice Signatures (Fig-

ure 4), WeightCheck Signatures (Figure 12), and Speed-
Check Signatures (Figure 21). It also shows the lines of

code for the PILOTS common library that is used from

all PILOTS programs.

Table 1 Comparison of lines of code between PILOTS, com-
piled Java programs, and the PILOTS common library (Note:
the lines of code exclude comments and names of the pro-
grams are shortened to save space).

Language Twice Twice Sigs WC Sigs SC Sigs
PILOTS 7 15 18 17

Java 62 95 122 139
Common Lib. 5365

3 Self-healing streams using error signatures

and machine learning

In this section, we present our framework for self-

healing data stream processing using PILOTS. We de-

fine error signatures for expert-created models, and a

machine learning component to support data-driven

model training and prediction.

3.1 System architecture

Figure 3 shows the system architecture of the self-

healing PILOTS runtime system. To add a self-healing

feature (i.e., error detection and correction) in PI-

LOTS, we add the mode estimation subsystem, which

consists of two components: the error analyzer and ML

component, to the core PILOTS runtime system in Fig-

ure 2. For error detection, the error analyzer uses error

signatures and the ML component uses machine learn-

ing. Whereas a domain expert designs error signatures

as part of a PILOTS program, for the ML component,

models are purely trained with data by the ML engine

either offline or online. Once an error mode is estimated,

error correction is performed by the application model

regardless of the error detection method. The types of

streams exchanged between the core PILOTS system

and the mode estimation subsystem are: input, error,

prediction, and mode. Whereas the ML component di-

rectly takes input streams from the data manager and

generates prediction streams or estimated error mode

streams, the error analyzer takes error streams from

the application model and returns estimated error mode

streams (for the definition of a mode, see Section 3.2.1).

Also, using the same architecture, the user can also

run a PILOTS program without the self-healing fea-

ture (e.g., Figure 1), with error signature-based error

detection only (e.g., Figure 4), or with ML-based error

detection only (e.g., Figure 7).

For better modularity, the ML engine is accessi-

ble through the ML interface with an adaptation layer,

which is implemented for a target ML library. The ML

engine exposes the following functionalities: offline/on-

line model training, value prediction for regression, and

mode prediction for classification. We use scikit-learn
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Fig. 3 System architecture of the proposed self-healing PILOTS runtime system.

as the ML engine in this work [30]. Similar to the ML-

engine, the error analyzer exposes its functionalities

through the error analyzer interface, which is used to

request mode estimation by error signatures. Currently,

there is no need to define an adaptation layer for the

error analyzer since there is no alternative implemen-

tation.

3.2 Error signatures

3.2.1 Definition of error signature

Error functions Error functions are used to detect pos-

sible faults among redundant input data streams. An

error function should have the value zero if there is no

error in the input data, when the whole system is work-

ing in the normal mode.

For example, in the cruise phases of a flight, the lift

equals the weight of the airplane. The lift can also be

calculated using other independently measured inputs,

including angle of attack, air density, temperature, pres-

sure, and airspeed. In this case, an error function can

be defined as follows.

eplift ,weightq “ lift ´ weight . (1)

In cruise phases, this equation should be zero. If there

is an error in the weight indicator, and the input weight

data is lower than the real weight, Equation (1) should

be greater than zero. Similarly, if the input weight data

is higher than the real weight, Equation (1) should be

smaller than zero. Thus, the validity of the input data

can be determined from the value of the error function.

As shown in Figure 2, error functions can be computed

from homogeneous input streams periodically and can

be represented as eptq.

Error signatures An error signature is a constrained

mathematical function pattern that is used to cap-

ture the characteristics of an error function eptq.

Using a vector of constants K̄ “ xk1, . . . , kmy,

a function fpt, K̄q, and a set of constraint predi-

cates P̄ “ tp1pK̄q, . . . , plpK̄qu, the error signature

SpK̄, fpt, K̄q, P̄ pK̄qq is defined as follows:

Spfpt, K̄q, P̄ pK̄qq fi t f | p1pK̄q ^ ¨ ¨ ¨ ^ plpK̄qu. (2)

Mode likelihood vectors Given a vector of error signa-

tures xS0, . . . , Sny, we calculate δipSi, tq, the distance

between the measured error function eptq and each er-

ror signature Si by:

δipSi, tq “ min
gptqPSi

ż t

t´ω

|eptq ´ gptq|dt. (3)

where ω is the window size. Note that our convention

is to capture “normal” conditions as signature S0. The

smaller the distance δi, the closer the raw data is to the
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theoretical signature Si. We define the mode likelihood

vector as Lptq “ xl0ptq, l1ptq, . . . , lnptqy where each liptq

is:

liptq “

#

1, if δiptq “ 0
mintδ0ptq,...,δnptqu

δiptq
, otherwise.

(4)

Mode estimation Using the mode likelihood vector, the

final mode output is estimated as follows. Observe that

for each li P L, 0 ă li ď 1 where li represents the ratio

of the likelihood of signature Si being matched with

respect to the likelihood of the best signature.

Because of the way Lptq is created, the largest el-

ement lj will always be equal to 1. Given a threshold

τ P p0, 1q, we check for one likely candidate lj that is

sufficiently more likely than its successor lk by ensur-

ing that lk ď τ . Thus, we determine j to be the correct

mode by choosing the most likely error signature Sj . If

j “ 0 then the system is in normal mode. If lk ą τ ,

then regardless of the value of k, unknown error mode

(´1) is assumed.

Error correction Whether or not a known error mode i

is recoverable is problem dependent. If there is a math-

ematical relationship between an erroneous value and

other independently measured values, the erroneous

value can be replaced by a new value estimated from

the other independently measured values.

3.2.2 Error detection and correction

Figure 4 shows an example PILOTS program with er-

ror signatures called Twice Signatures. This program is

an enhancement of the Twice program in Figure 1. A

signatures section is defined to capture the shape of the

error computed in e under the errors section. Both a and

b are expected to increase by one for a and by two for b

every second (i.e., aptq “ t`k and bptq “ 2t`k, where

k is a constant). Thus, the error is zero in the Normal
case. Suppose a is failed and keeps producing the last

observed value, the error keeps increasing with the slope

of 2. Similarly, when b is failed and keeps producing the

last observed value, the error keeps decreasing with the

slope of ´2. We can express these behaviors as error

signatures: e “ 2 ˚ t` k and e “ ´2 ˚ t` k respectively

for A failure and B failure. Using the error detection

method described in Section 3.2.1 with these error sig-

natures, the error analyzer detects error modes. Once

a mode is determined, the original data is estimated by

the application model as shown in the estimate clauses:

a “ b{2 for A failure and b “ 2 ˚ a for B failure.

'

&

$

%

program Twice_Signatures;
inputs

a (t) using closest(t);
b (t) using closest(t);

outputs;
o: (b - 2 * a) at every 1 sec;

errors
e: b - 2 * a;

signatures
s0: e = 0 "Normal";
s1: e = 2*t + k "A failure"

estimate a = b / 2;
s2: e =-2*t + k "B failure"

estimate b = 2 * a;
end

Fig. 4 Error signatures-based declarative specification of the
Twice Signatures PILOTS program.

3.3 Machine learning

3.3.1 Offline and online training

The ML engine takes a trainer file 1, as shown in Fig-

ure 5 and Figure 6 for example, to train a model re-

gardless of whether the training is online or offline. The

trainer file consists of three sections: optional constants,
and mandatory data and model sections. The constants
section defines constants. The data section contains in-

formation for training data file and variables used in

the model section. The model section further contains

subsections: features, labels, and algorithm. Figure 5 is

an example of linear regression trainer that learns lin-

ear relationship b “ β1a ` β0 from variables a and b

offline. Figure 6 is another example of Bayes classifier

trainer, which is used to learn a label specified by the

mode from a computed feature b´ 2 ˚ a.

For the offline training, the user manually trains a

model using a training data file specified in the trainer

file. For the online training, training is automatically

performed together with prediction at runtime if online

training is enabled for the specified model. Every time

the data manager requests a prediction, the ML engine

updates a learning model and gives prediction results

back to the data manager, which sends the prediction

results to the application model as requested.

#

"

 

!

trainer twice_b_regression;
data
a, b using file(twice_ab.csv);

model
features: a;
labels: b;
algorithm: LinearRegression;

end

Fig. 5 Example training specification for linear regression.

1We have designed, but not fully implemented the trainer
abstraction in PILOTS version 0.4 as of June 2017.
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"

 

!

trainer twice_mode_bayes;
data

a, b, mode using file(twice_abmode.csv);
model

features: b - 2*a;
labels: mode;
algorithm: BayesClassifier;

end

Fig. 6 Example training specification for Bayes classifier.

3.3.2 Error detection and correction

As shown in Figure 7, to support prediction in the

PILOTS programming language, a new data selection

method model is defined in addition to the methods

described in Section 2.3. The model method takes an

identifier of the model, as defined in the trainer file

(e.g., twice mode bayes in Figure 6), and input vari-

ables as arguments. This method works as the main

interface between the data manager and the ML-engine.

Figure 7 shows a simple example PILOTS program

called Twice Bayes, which is a Bayes classifier version

of the Twice PILOTS program. Same as in the exam-

ples shown in Figure 1 and Figure 4, b is expected to

be twice as large as a. We assume a Bayes classifier is

already trained with the trainer shown in Figure 6 with

three modes: Normal(=0), A failure(=1), B failure(=2).

Also, we can refer to this classifier as twice mode bayes.
This program obtains a mode directly from the model
method with input variables a and b. In case of failures,

either a or b is recomputed by the estimate clauses simi-

lar to the error signatures-based error correction shown

in Figure 4.

'

&

$

%

program Twice_Bayes;
inputs

a, b (t) using closest (t);
mode (t) using model(twice_mode_bayes, a, b);

outputs
mode_out: mode at every 1 sec;

modes
m0: mode = 0 "Normal";
m1: mode = 1 "A failure"
estimate a = b / 2;

m2: mode = 2 "B failure"
estimate b = 2 * a;

end

Fig. 7 Declarative specification of the Twice Bayes PILOTS
program.

4 Dynamic Bayes classifier

Naive Bayes classifiers [33,22] are commonly used in

supervised training and classification. For continuous

data, if the values of samples in each class are assumed

to be normally distributed, the classifiers are called

Gaussian naive Bayes classifiers [23]. In the training

phase, tagged samples of different classes are processed

to train the parameters of the classifier. The param-

eters include the mean value, standard variance, and

prior probability of each class. In the testing phase, the

trained Bayes classifier decides the class of untagged

input samples.

One limitation of the traditional naive Bayes clas-

sifier is that the input samples in the testing phase

will only be classified into classes that appeared in the

training phase. If a sample of a previously unknown

class appears, it will be classified into one of the known

classes, even if the probability that it belongs to that

class is very low. However, with dynamic stream data,

new modes not in the training set could occur in some

complex situations. For example, if a Bayes classifier is

trained to recognize the “normal weight” and “under-

weight” modes of the weight indicator on an airplane

during flights, and a previously unknown mode “over-

weight” appears in testing phase, the classifier will not

be able to detect this new mode, but will classify the

samples to “normal weight” or “underweight” based on

the value and prior probability of the modes.

To tackle this limitation of the naive Bayes classi-

fier, we extend it into a dynamic Bayes classifier that

has two phases: (1) Offline: Supervised learning, which

is the same as Gaussian naive Bayes classifiers. (2) On-

line: Unsupervised dynamic incremental learning, that

classifies samples in known modes, updates parameters

of the model, and create new modes for samples in pre-

viously unknown modes. Because we focus on process-

ing data streams during flights and deciding the normal

or error operational modes of an airplane, the words

“mode” and “class” are used interchangeably and have

the same meaning in this paper.

4.1 Offline supervised learning

4.1.1 Gaussian naive Bayes classifier

In a Gaussian naive Bayes classifier [23], each input

sample X is described by a feature vector px1, . . . , xnq,

and each sample is classified into a target class y P

ty1, . . . , ymu. In this paper, we consider samples of only

one feature x, but the results can be generalized to n

features. By Bayes’ theorem, the conditional probabil-

ity P py|xq is:

P py|xq “
P pyqP px|yq

P pxq
(5)
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As the samples in each feature are assumed to be

normally distributed, P px|yq is calculated by:

P px|yq “
1

b

2πσ2
y

e
´
px´µyq

2

2σ2y (6)

Where µy is the mean of the values in x associated

with class y, and σy is the standard deviation of the

values in x associated with class y.

The corresponding classifier ŷ is:

ŷ “ arg maxP py|xq (7)

Because P pxq is the same for each class, ŷ is:

ŷ “ arg maxP py|xq “ arg max P pyqP px|yq (8)

4.1.2 Offline learning phase

In the offline supervised learning phase, input data

tagged with mode labels are processed by a Gaussian

naive Bayes classifier. The mean value µy, standard de-

viation σy, and the prior probability P pyq of each mode

y, are calculated by the classifier, as in Figure 8.

4.2 Dynamic online unsupervised learning

4.2.1 Major and minor modes

To support dynamically changing modes during the on-

line learning phase, the concepts of major and minor

modes are introduced. The modes in the offline super-

vised learning phase are major modes. In the prediction

and online learning phase, before a sample is processed

by the Bayes classifier, the value is checked by a pre-

processor to decide if it is in the range of each major

mode. As 95% of the values in a normal distribution lie

within µ˘ 2σ, if the sample is not within that range of

any major mode, a new minor mode is created. As more

data are processed, when the number of samples in a

minor mode exceeds a threshold, it will be turned into

a major mode. Minor modes are used to keep samples

differentiated from known major modes. A threshold is

used to diminish the impact of noise. Mode ID is auto-

matically assigned when a new mode is detected.

4.2.2 Online learning phase

The process of dynamic online unsupervised learning

is shown in Figure 8. The parameters of initial major

modes are from the training results of the offline train-

ing phase. As untagged samples are processed, if the

value is within µ ˘ 2σ of any major mode, the sample

will be classified by naive Bayes classifier, and the pa-

rameters are incrementally updated. If the value is not

within µ˘ 2σ of any major mode, but is within µ˘ 2σ

of a minor mode, it will be classified into the closest

minor mode, and the parameters of minor modes are

updated accordingly. Finally, if the value of the sample

is not within µ ˘ 2σ of any major or minor mode, a

new minor mode will be created for this sample. σ of

the new minor mode is initially set as the average σ of

the existing major modes. When the size of the minor

mode is greater than a threshold, we start to calculate

and use the real σ of the minor mode. The reason is

that the σ might be biased if the number of samples is

too small. Each time when the parameters of a minor

mode are updated, if the number of samples exceeds

a certain threshold, it will be upgraded into a major

mode.

5 Case study 1: Airplane weight estimation

To help prevent accidents caused by fuel quantity indi-

cator errors such as the Tuninter 1153 flight accident,

we use the X-Plane flight simulator to generate flight

sensors data and simulate airplane weight error sce-

narios. Since during cruise phases, weight is equal to

lift, we can estimate weight by using the lift equation

from aerodynamics theory. Lift depends on airspeed, air

density, wing surface area, and coefficient of lift. The

coefficient of lift itself depends on the angle of attack

and this relationship can change with different aircraft

types. Figure 9 suggests a linear relationship between

angle of attack and coefficient of lift for the expected

range of angle of attack in cruise conditions. Therefore,

we choose to use linear regression to predict coefficient

of lift. Figure 11 confirms that a linear model was an

appropriate choice.

We first estimate the actual weight based on error

signatures with a linear model learned using linear re-

gression in Section 5.1. Then, in Section 5.2, we use our

dynamic Bayes classifier to detect erroneous weight and

estimate the true weight.
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Fig. 8 Online classification and incremental learning using dynamic Bayes classifier.

5.1 Estimation by error signatures

5.1.1 Training weight model using linear regression

Weight model design In cruise phase, when yaw, roll

angles are close to zero and pitch is small, we assume

L “ W , in which L is total lift and W is gross weight.

Based on the assumption, we can estimate W by the

lift equation:

W “ L “
1

2
v2SρCl, (9)

where v is true air speed, S is wing surface area, ρ is air

density and Cl is coefficient of lift. From ideal gas law,

we know ρ “ p
R1T , where p is ambient air pressure, R1

is special gas constant and T is ambient temperature,

and replace ρ with p
R1T in Equation (9) to get:

W “
pv2SCl
2R1T

(10)

and by transforming Equation (10), Cl, coefficient of

lift could be represented by:

Cl “
2WR1T

pv2S
. (11)

Generally Cl depends on the shape of airfoil and the

shape of an aircraft. To roughly estimate Cl, the com-

plex physical model is simplified using Thin-Airfoil the-

ory, which predicts a linear relationship [3] between co-

efficient of lift, Cl, and the angle of attack, α, for low

values of α, as shown in Figure 9 between dashed ver-

tical lines. This relationship can be expressed as:

Cl “ β1α` β2 ` ε (12)

where ε is noise and α is known while β1 and β2 are

distinct values for different aircrafts. A linear model

could be formulated as the following:

y “ Xβ ` ε (13)

y “

¨

˚

˚

˚

˝

Cl1
Cl2

...

Cln

˛

‹

‹

‹

‚

, Cli “
2WiR

1Ti
piv2i S

,X “

¨

˚

˚

˚

˝

α1 1

α2 1
...

αn 1

˛

‹

‹

‹

‚

, β “

ˆ

β1
β2

˙

Because each column in X is independent, we could

use the least squares method defined to retrieve β̂, and

predict Ŵ using the following equation:

Ŵ “
pv2Spβ1α` β2q

2R1T
(14)

where we have substituted the linear estimation of Cl,

in Equation (10).

Experimental settings Synthetic data with simple rela-

tionships are used to verify the integration of machine

learning approaches into PILOTS. In this example, sim-

ulated ATR-72 500 airplane data is used for PILOTS to

detect and correct for weight error in the data streams,

and the relation between coefficient of lift and angle

of attack is investigated. To simulate and test linear

regression implemented in PILOTS machine learning

component, we assume certain known variables. It is

required that the following variables are correctly mea-

sured and known: gross weight W , ambient pressure p,

true airspeed v, wing surface area S, special gas con-

stant for dry air R1, and ambient temperature T .
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Fig. 9 Coefficient of lift as a function of an-
gle of attack for a cambered airfoil, adapted from
https://en.wikipedia.org/wiki/Lift coefficient.

A linear model to predict coefficient of lift Cl is

trained with synthetic data using offline training def-

inition file as shown in Figure 10. The trainer file will

generate a prediction model with the ID cl regression.

In this case, a linear regression model will be trained by

data defined in data section, in which also the variables

are initialized. schema defines the additional attributes

to the variables and preprocess defines the actions to be

taken on input dataset before training. The generated

model will be used for estimation of coefficient of lift

from angle of attack.

'

&

$

%

trainer cl_regression;
/* v: true air speed,

a: angle of attack,
p: pressure, t: temperature,
w: gross weight, S: wing area,
R: Gas constant

*/
constants

R = 286.9;
S = 61.0;

data
v, p, t, w, a using file(weightcheck.csv );
schema
unit(v:knot, p:in_Hg, t:celsius,

w:force_pound, a:degree);
model

preprocess
changeunit using

unit(v:m/s, p:pascal, t:kelvin,
w:newton, a:radian);

features: a;
labels: 2*w/(vˆ2 * (p/R/t)*S);
algorithm: LinearRegression;

end

Fig. 10 Offline training parameters for coefficient of lift pre-
diction model with linear regression.

Training result Figure 11 shows the training result of

linear relationship between angle of attack and coef-

ficient of lift, where the learned parameters are β1 “

6.3888 and β2 “ 0.3589. The evaluation of the trained

model gives R2 “ 0.9949, RMSE “ 0.00794, showing

a strong linear relationship with low in-sample error.

Using Equation (9), we compute the training error be-

tween measured weight and estimated weight, resulting

in RMSE “ 2687N .

Fig. 11 The linear relation between angle of attack and co-
efficient of lift in cruise phase of training set.

5.1.2 Performance metrics for error mode detection

We evaluate the performance of error detection based

on accuracy and response time, which are defined as

follows:

– Accuracy: This metric is used to evaluate how ac-

curately the algorithm determines the true mode.

Assuming the true mode transition mptq is known

for t “ 0, 1, 2, . . . , T , let m1ptq for t “ 0, 1, 2, . . . , T

be the mode determined by the error detection al-

gorithm. We define accuracypm,m1q “ 1
T

řT
t“0 pptq,

where pptq “ 1 if mptq “ m1ptq and pptq “ 0 other-

wise.

– Maximum/Minimum/Average Response Time: This

metric is used to evaluate how quickly the algorithm

reacts to mode changes. Let a tuple pti,miq repre-

sent a mode change point, where the mode changes

to mi at time ti. Let

M “ tpt1,m1q, pt2,m2q, . . . , ptN ,mN qu,

and

M 1 “ tpt11,m
1
1q, pt

1
2,m

1
2q, . . . , pt

1
N 1 ,m

1
N 1qu,

where M and M 1 are the sets of true mode changes

and detected mode changes respectively. To remove

noise in the detected changes, we further apply the

following operation to M 1: if t1i`1 ´ t1i ď δ, remove

a tuple pt1i`1,m
1
i`1q from M 1, where δ is a small
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threshold value to eliminate frequent mode changes.

For each i “ 1 . . . N , we can find the smallest t1j such

that pti ď t1jq ^ pmi “ m1jq; if not found, let t1j be

ti`1. The response time ri for the true mode mi

is given by t1j ´ ti. We define the maximum, min-

imum, and average response time by max1ďiďN ri,

min1ďiďN ri, and 1
N

řN
i“1 ri respectively.

5.1.3 Error detection and correction using error

signatures

Error signatures The error function e is given by Equa-

tion (15) as the percentage of discrepancy between pre-

dicted weight Ŵ and measured weight W . The error

signatures use a threshold of 3.5% because this number

is more rigorous than the percentage of discrepancy be-

tween error weight and actual weight in Tuninter 1153

accident, which is about 10%.

e “
W ´ Ŵ

W
(15)

Mode Error Signature
Function Constraints

Normal e “ k ´0.035 ă k ă 0.035
Overweight e “ k k ą 0.035

Underweight e “ k k ă ´0.035

Table 2 Error signatures set for weight correction.

PILOTS program The WeightCheck Signatures PI-

LOTS program implementing the error signatures in

Table 2 is shown in Figure 12. If the error signature s1
or s2 is detected, the program estimates weight using

Equation (14). The data selection module computes v1,

a1, p1, te1, w1 using data points with the closest time

stamp, and uses a1 as an input matrix to predict cl1

using model the with the ID cl regression.

Experimental settings X-Plane 9.7 is used to generate

flying data of ATR72-500 in different altitudes, gross

weights and power settings. The data is split by se-

lecting three flights’ 25 cruise phases, 1251 minutes in

total, as training set, and one 20-minutes flight with

four cruise phases as testing set. The model is trained

by 25 cruise phases in the training set and tested by

four cruise phases in the testing set. To evaluate the

PILOTS error detection accuracy, the whole testing set

is modified to introduce artificial measurement errors

as follows: weight data in the range from 1 to 100 and

750 to 800 seconds is multiplied by 0.9, from 1025 to

'

&

$

%

program WeightCheck_Signatures;
/* v: true air speed [m/s],

a: angle of attack [rad],
p: pressure [Pa], te: temperature [K],
w: gross weight [N], S: wing area [mˆ2],
R: Gas constant [J kgˆ-1 Kˆ-1],
cl: coefficient of lift

*/
constants
R = 286.9;
S = 61.0;

inputs
v, a, p, te, w (t) using closest(t);
cl (t) using model(cl_regression, a);

outputs
corrected_weight: w at every 1 sec;

errors
e: (w - p*(v*v)*S*cl/(2*R*te)) / w;

signatures
s0: e = K, -0.035 < K < 0.035 "Normal";
s1: e = K, K > 0.035 "Underweight"
estimate w = p*(v*v)*S*cl/(2*R*te);

s2: e = K, K < - 0.035 "Overweight"
estimate w = p*(v*v)*S*cl/(2*R*te);

end

Fig. 12 Declarative specification of WeightCheck Signatures
PILOTS program using error signature.

1099 seconds is multiplied by 1.1, from 390 to 490 sec-

onds is multiplied by 1.05, from 570 to 648 seconds is

multiplied by normal distribution of error with mean

at 1 and standard deviation at 0.1, from 291 to 377

seconds are multiplied by uniform distribution of error

ranging from 0.9 to 1.1. The cruise phases of testing set

lie between 5 to 164, 230 to 395, 470 to 688 and 780 to

1108 seconds. We can visualize this data as “measured”

in Figure 13.

PILOTS program WeightCheck Signatures in Fig-

ure 12 is executed with different combinations of

window sizes ω P t1, 2, 4, 8, 16u and thresholds τ P

t0.2, 0.4, 0.6, 0.8, 0.99u to investigate the accuracy and

average response time, which is computed using δ = 0,

because of the instability of error modes in the dataset.

Results Figure 13 shows the estimated weight and mea-

sured weight during the 18 minutes flight where ω “ 1

and τ “ 0.99, the best combination among all combina-

tions in accuracy and response time. The PILOTS pro-

gram can successfully detect and correct underweight

and overweight conditions in cruise phases, with root

mean squared error close to 1617N. The program per-

forms the best in system failure simulation regions of

cruise phase 1 and 4, where the weight drifts by 10%

or 5%. The accuracy is 100% and max/min/average

response time is 0/0/0 seconds. In random error simu-

lation regions of cruise phase 2 and 3, performance is

decreased to have accuracy 89.1% and max/min/aver-

age response time 84/0/1.76 seconds. The overall accu-

racy is 95.2% and max/min/average response time is

84/0/1.65 seconds. Outside cruise phases, the program
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does not estimate weight properly since the assumption

L “W does not hold.

Fig. 13 Error detection and correction using ω “ 1, τ “ 0.99
for X-Plane simulated data.

5.2 Estimation by dynamic Bayes classifier

5.2.1 Offline training

We use W ´ Ŵ as the feature for the dynamic Bayes

classifier. Estimated weight is calculated by Equa-

tion (9) using the method described in Section 5.1.1.

The dynamic Bayes classifier is trained with both “nor-

mal” and “underweight” tagged data in the offline

learning phase. Figure 14 shows the parameters set-

ting for the offline training phase. PILOTS uses this

trainer file to generate a prediction model with the ID

weightcheck mode bayes, in which the model is defined

in model with dynamic Bayesian classifier using sigma

scale 2, which represents µ ˘ 2σ for range of a mode

for classification, and threshold 100 for turning a mi-

nor mode into a major mode. The prediction model

cl regression is used for estimating Ĉl, which is then

used for estimation of Ŵ .

5.2.2 Online error detection and correction

PILOTS program The WeightCheck Bayes PILOTS

program is shown in Figure 15. This program is used

for the online learning and classification to detect and

give weight estimation to different weight error modes.

Experimental settings We use the same performance

metrics for major mode prediction: accuracy and re-

sponse time as in Section 5.1.2.

See Section 5.1.3 for data generation. We use the

same testing data, and 8000 seconds training data in

cruise phase modified as follows: weight data in the

'

&

$

%

trainer weightcheck_mode_bayes;
/* v: true air speed,

a: angle of attack,
p: pressure, t: temperature,
w: gross weight, S: wing area,
R: Gas constant, mode: labeled mode for training,
cl: coefficient of lift

*/
constants
S = 61.0;
R = 286.9;

data
v, p, t, w, a, mode using file(weightcheck.csv);
cl using model(cl_regression, a);
schema
unit(v:knot, p:in_Hg, t:celsius,

w:force_pound, a:degree);
model
preprocess
changeunit using
unit(v:m/s, p:pascal, t:kelvin,

w:newton, a:radian);
features: w - (1/2)*vˆ2*S*(p/(R*t))*cl;
labels: mode;
algorithm:

DynamicBayesClassifier(
sigma_scale:2, threshold:100);

end

Fig. 14 Offline training parameters for the dynamic Bayes
classifier.'

&

$

%

program WeightCheck_Bayes;
/* v: true air speed [m/s],

a: angle of attack [rad],
p: pressure [Pa], te: temperature [K],
w: gross weight [N], S: wing area [mˆ2],
R: Gas constant [J kgˆ-1 Kˆ-1],
cl: coefficient of lift

*/
constants
S = 61.0;
R = 286.9;

inputs
v, a, p, te, w (t) using closest(t);
cl (t) using model(cl_regression, a);
mode (t) using model(weightcheck_mode_bayes,

v, p, te, w, cl);
modes
m0: mode = 0 "Normal";
m1: mode = 1 "Underweight"
estimate w = p*(v*v)*S*cl/(2*R*te);

end

Fig. 15 A declarative specification of the WeightCheck Bayes
PILOTS program using the dynamic Bayes classifier.

range from 1526 to 3129 second are multiplied by 1.1

to simulate underweight mode. There are two major

modes in the tagged training data: mode 0 for normal

status and mode 1 for underweight status. For online

learning, we set the threshold of the sample number to

turn a minor mode into a major mode to 100. Instead of

using average σ, the sample number threshold for cal-

culating σ of a new mode is also set as 100. Figure 16

(a) shows the feature and Figure 16 (b) shows tagged

mode of training data. The major modes of the classi-

fier after training phase is shown in Table 3 where n is

the number of data point classified to a mode.
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Results Figure 17 and Table 4 show the results of

weight error mode detection by dynamic Bayes clas-

sifier. Using the same testing data as in Figure 13, the

dynamic Bayes classifier successfully detects three ma-

jor modes in the cruise phases: mode 0 for normal, mode

1 for underweight, and mode 3 for overweight. Mode

0 and mode 1 are major modes that appeared in the

tagged training data, mode 3 is a new major mode de-

tected by the classifier during the online incremental

learning and prediction phase. There are also 22 mi-

nor modes generated by the noise and non-cruise phase

data in the testing set. Using the metric described in

Section 5.1.2 on only major modes, in systematic fail-

ure simulation regions of cruise phase 1 and 4, the ac-

curacy is 95.3% and max/min/average response time is

19/0/3.83 seconds, while in random error simulation re-

gions of cruise phase 2 and 3, the accuracy is largely de-

creased to 66.7% and max/min/average response time

is increased to 98/0/5.38 seconds. The overall accuracy

of major mode detection on all cruise phases is 82.7%

and max/min/average response time is 98/0/5.28 sec-

onds. Figure 18 illustrates the result of weight estima-

tion in detected underweight mode. When in under-

weight mode and cruise phase, the estimation gives root

mean squared error of approximately 1420N.

Table 3 Major modes of dynamic Bayes classifier after run-
ning training dataset.

Mode description Mode µ σ n
Normal 0 49 2534 5937

Underweight 1 16068 3249 1604

Table 4 Major and minor modes of dynamic Bayes classifier
after error mode detection on testing dataset.

Mode
status

Mode
description

Mode µ σ n

Major
Normal 0 -50 2481 6522

Underweight 1 15961 3201 1746
Overweight 3 -14472 1151 121

Minor Noise 2, 4-24 N/A N/A N/A

5.3 Summary of results

In systematic failure simulation regions, the average re-

sponse time of the error signatures approach with 0.035

as threshold, ω “ 1, and τ “ 0.99, is 3.83 seconds

shorter than that of the dynamic Bayes classifier, and

the error signatures approach is 4.7% more accurate

than the dynamic Bayes classifier. And in random error

simulation regions, the error signature approach pro-

duces 3.62 seconds shorter average response time and

Fig. 16 Weight error mode training data for the dynamic
Bayes classifier.

Fig. 17 Weight error mode detection using dynamic Bayes
classifier.

22.4% more accurate than those of the dynamic Bayes

classifier. One of the reasons is that in random error

simulation regions, many minor modes are created in-

stead of major modes, resulting in poor performance

of major modes on the regions. However, the dynamic

Bayes classifier discovers discrete error modes dynami-

cally and automatically while the error signatures ap-

proach is static, that is, every signature must be prede-

fined manually.
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Fig. 18 Weight error correction using dynamic Bayes classi-
fier.

6 Case study 2: Airplane speed estimation

To help prevent accidents caused by pitot tube failures

such as the Air France 447 flight accident, we use ac-

tual speed data recovered from the Air France 447’s

flight data recorder for evaluation. First, we estimate

the true airspeed based on error signatures that we de-

rive from a geometrical model in Section 6.1. Next, we

train our dynamic Bayes classifier with synthetic data

streams which consist of airspeed, ground speed, and

wind speed and use it to estimate the correct airspeed

in Section 6.2.

6.1 Estimation by error signatures

6.1.1 Derivation of speed checking model

Unlike the weight model in Section 5, the relationship

between airplane speeds can be modeled in a simpler

way. The relationship between ground speed, airspeed,

and wind speed follows the following formula:

ÝÑvg “ ÝÑva `ÝÑvw. (16)

where ÝÑvg ,ÝÑva, and ÝÑvw represent the ground speed, the

airspeed, and the wind speed vectors. A vector ÝÑv can

be defined by a tuple pv, αq, where v is the magnitude

of ÝÑv and α is the angle between ÝÑv and a base vector.

Following this expression, ÝÑvg ,ÝÑva, and ÝÑvw are defined as

pvg, αgq, pva, αaq, and pvw, αwq respectively as shown in

Figure 19.

To examine the relationship in Equation (16), we

can compute ÝÑvg by applying trigonometry to 4ABC
as shown in Figure 19. We can define an error function

as the difference between measured vg and computed

v
w

v
a

α
a
-α

w

v
g

α
a

C

A

B

α
w

Fig. 19 Trigonometry applied to the ground speed, airspeed,
and wind speed.

vg as follows:

epÝÑvg ,ÝÑva,ÝÑvwq “|ÝÑvg |´|ÝÑva `ÝÑvw|

“ vg ´
a

v2a ` 2vavw cospαa ´ αwq ` v2w.

(17)

6.1.2 Error detection and correction using error

signatures

Error signatures We consider the following four error

modes: 1) normal (no error), 2) pitot tube failure due

to icing, 3) GPS failure, 4) both pitot tube and GPS

failures. Suppose the airplane is flying at airspeed va.

For computing error signatures for different error condi-

tions, we will assume that other speeds as well as failed

airspeed and ground speed can be expressed as follows.

– ground speed: vg « va.

– wind speed: vw ď ava, where a is the wind to air-

speed ratio.

– pitot tube failed airspeed: blva ď v̄a ď bhva, where

bl and bh are the lower and higher values of pitot

tube clearance ratio and 0 ď bl ď bh ď 1. 0 repre-

sents a fully clogged pitot tube, while 1 represents

a fully clear pitot tube.

– GPS failed ground speed: v̄g “ 0.

We assume that when a pitot tube icing occurs, it is

gradually clogged and thus the airspeed data reported

from the pitot tube also gradually drops and eventually

remains at a constant speed while iced. This resulting

constant speed is characterized by ratio bl and bh. On

the other hand, when a GPS failure occurs, the ground

speed suddenly drops to zero. This is why we model the

failed ground speed as v̄g “ 0.

In the case of pitot tube failure, let the ground

speed, wind speed, and airspeed be vg “ va, vw “ ava,
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and v̄a “ bva. The error function (17) can be expressed

as follows:

e “ va ´
a

v2apb
2 ` 2ab cospαa ´ αwq ` a2q.

Since ´1 ď cospαa ´ αwq ď 1, the error is bounded by

the following:

va ´
a

v2apa` bq
2 ď e ď va ´

a

v2apa´ bq
2

p1´ a´ bqva ď e ď p1´ |a´ b|qva. (18)

In the case of GPS failure, let the ground speed, wind

speed, and airspeed be v̄g “ 0, vw “ ava, and va “ va.

The error function (17) can be expressed as follows:

e “ 0´
a

v2ap1` 2a cospαa ´ αwq ` a2q.

Similarly to the pitot tube failure, we can derive the

following error bounds:

´pa` 1qva ď e ď ´|a´ 1|va. (19)

We can derive error bounds for the normal and both

failure cases similarly. Applying the wind to airspeed

ratio a and the pitot tube clearance ratio bl ď b ď bh to

the constraints obtained in Inequalities (18) and (19),

we get the error signatures for each error mode as shown

in Table 5.

Table 5 Error signatures for speed data.

Mode
Error Signature

Function Constraints

Normal e “ k k P r´ava, avas

Pitot tube failure e “ k
k P rp1 ´ a ´ bhqva,
p1 ´ |a ´ bl|qvas

GPS failure e “ k k P r´pa ` 1qva,´|a ´ 1|vas
Both failures e “ k k P r´pa ` bhqva,´|a ´ bl|vas

When a “ 0.1, bl “ 0.2, and bh “ 0.33, the error

signatures shown in Table 5 are visually depicted in

Figure 20.

PILOTS program The SpeedCheck Signatures PILOTS

program implementing the error signatures shown in

Table 5 is presented in Figure 21 2. This program checks

if the wind speed, airspeed, and ground speed are cor-

rect or not, and computes a crab angle, which is used

to adjust the direction of the aircraft to keep a desired

ground track. For this program to be applicable to the

aircraft used for Air France 447, we use a cruise speed

of 470 knots as va.

2We have not implemented the when clause support in
PILOTS version 0.4 as of June 2017.

0.1va

e

-0.1va

0.57va

0.9va

-0.43va

-0.9va

-1.1va

tNormal

Both failures

Pitot tube failure

GPS failure

Fig. 20 Error Signatures for speed data (a “ 0.1, bl “ 0.2,
and bh “ 0.33).'

&

$

%

program SpeedCheck_Signatures;
/* va: airspeed, aa: airspeed angle,

vw1: wind speed,
aw1: wind speed angle,
vw2: estimated wind speed,
aw2: estimated wind speed angle,
vg: ground speed, ag: ground angle */

inputs
va, vg, vw1 (t) using closest(t);
aa, ag, aw1 (t) using closest(t);

outputs
va_out: va at every 1 sec;
vw2: sqrt(va*va + vw2*vw2 -

2*va*vw2*cos((PI/180)*(ag-aa)))
at every 1 sec when s0 10 times;

aw2: cos((PI/180)*(ag-aa)
at every 1 sec when s0 10 times;

errors
e: vg - sqrt(va*va + vw1*vw1 +

2*va*vw1*cos((PI/180)*(aw-aa)));
signatures
/* v_a=470, a=0.1, b=0.2...0.33 */
s0: e = K, -47 < K, K < 47 "No error";
s1: e = K, 220.9 < K, K < 517 "Pitot tube failure"
estimate va =
sqrt(vg*vg + vw2*vw2 -
2*vg*vw2*cos((PI/180)*(ag-aw2)));

s2: e = K, -517 < K, K < -423 "GPS failure"
estimate vg =
sqrt(va*va + vw2*vw2 +

2*va*vw2*cos((PI/180)*(aw2-aa)));
s3: e = K, -203.66 < K, K < -47
"Pitot tube + GPS failure";

end

Fig. 21 Declarative specification of the Speed-
Check Signatures PILOTS program.

Experimental settings The ground speed and airspeed

are collected based on Appendix 3 in the final report of

Air France flight 447 [6].

Note that the (true) airspeed was not recorded in

the flight data recorder so that we computed it from

recorded Mach (M) and static air temperature (SAT )

data. The airspeed was obtained by using the relation-

ship: va “ a0M
a

SAT {T0, where a0 is the speed of

sound at standard sea level (661.47 knots) and T0 is

the temperature at standard sea level (288.15 Kelvin).
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Independent wind speed information was not recorded

either. According to the description from page 47 of the

final report: “(From the weather forecast) the wind and

temperature charts show that the average effective wind

along the route can be estimated at approximately ten

knots tail-wind.” We followed this description and cre-

ated the wind speed data streams (i.e., vw1 and aw1 in

Figure 21) as ten knots tail wind.

While wind speed data streams from the accident

report are useful to compute the error, it may be more

accurate to use the wind data derived from measured

ground speed and airspeed [15]. Since wind speed data

can be estimated by ÝÑvw “ ÝÑvg ´ ÝÑva, we can save this

estimated wind speed as long as we detect the normal

mode consistently. In Figure 21, we define vw2 and aw2
as the estimated wind speed streams, which values are

updated when we observe the normal mode (i.e., s0
signature is matched) for 10 times. Once we detect an

error in airspeed (va) or ground speed (vg), we use vw2
and aw2 to recompute estimated airspeed or ground

speed respectively.

According to the final report, speed data was pro-

vided from 2:09:00 UTC on June 1st 2009 and it be-

came invalid after 2:11:42 UTC on the same day. Thus,

we examine the valid 162 seconds of speed data in-

cluding a period of pitot tube failure which occurred

from 2:10:03 to 2:10:36 UTC. so the set of true mode

changes is defined as M “ tp1, 0q, p64, 1q, p98, 0qu. The

accuracy and average response time are investigated

for window sizes ω P t1, 2, 4, 8, 16u and threshold τ P

t0.2, 0.4, 0.6, 0.8u with the true mode changes M “

tp1, 0q, p64, 1q, p98, 0qu.

Results From the metric described in Section 5.1.2 with

δ = 5 for response time, the best results, accuracy =

94.4%, max/min/average response times = 5/0/1.67

seconds, are observed when ω “ 1 and τ “ 0.8. The

transitions of the corrected speed and detected modes

that show the best accuracy with ω “ 1 and τ “ 0.8

are shown in Figure 22. Looking at Figure 22(b), the

pitot tube failure is successfully detected from 70 to 96

seconds except for the interval 63 to 69 seconds due to

the slowly decreasing airspeed. The response time for

the normal to pitot tube failure mode is 5 seconds and

for the pitot tube failure to normal mode is 0 seconds

(thus the average response time is 1.67 seconds). From

Figure 22(a), the airspeed successfully starts to get cor-

rected at 70 seconds and seamlessly transitions to the

normal airspeed when it recovers at 99 seconds.
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Fig. 22 Corrected airspeed and detected modes for AF447
flight.

6.2 Estimation by dynamic Bayes classifier

6.2.1 Offline training

We create a training dataset for three error modes (i.e.,

normal, pitot tube failure, GPS failure) by simulation

using the parameters as shown in Table 6. Note that

all the speeds are relative to airspeed va and all the

angles are in degrees. N pµ, σq is a normal distribu-

tion with mean µ and standard deviation σ. Upa, bq is

a uniform distribution that randomly choose a num-

ber between ra, bs. ε is a Gaussian measurement noise.

fpva, αa, vw, αwq gives ground speed vg such that the

error defined in Equation (17) becomes zero. Similarly,

gpva, αa, vw, αwq gives ground speed angle αg such that

an error defined for angles becomes zero.

Table 6 Simulation parameters to generate speed estimation
model training data.

Parameters
Error modes

Normal
Pitot tube

GPS failure
failure

Number of samples 10,000 10,000 10,000
va: airspeed 1.0 ` ε N p0.5, 0.067q 1.0 ` ε
αa: airspeed angle 45 ` ε
vw: wind speed 0.1 ` ε
αw: wind speed angle Up0, 360q
vg: ground speed fpva, αa, vw, αwq ` ε 0.0 + ε
αg: ground speed angle gpva, αa, vw, αwq ` ε

Similar to what we define the error signatures set

for speed data in Section 6.1.2, we make some assump-

tions on how pitot tube and GPS failures occur. In

the case of pitot tube failure, we assume the pitot
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tube clearance ratio b has some randomness and fol-

lows the normal distribution N p0.5, 0.067q. We define

failed airspeed v̄a “ b ¨va, but since va “ 1.0, va follows

N p0.5, 0.067q. In the case of GPS failure, the ground

speed drops to zero with a small measurement error ε.

Offline training of the dynamic Bayes classifier is

performed with training parameters in Figure 23, where

the feature is chosen to be the difference between mea-

sured ground speed and estimated ground speed calcu-

lated using other variables.

'

&

$

%

trainer speedcheck_mode_bayes;
/* vw: wind speed, aw: wind speed angle

va: airspeed, aa: airspeed angle
vg: ground speed, ag: ground angle,
mode: the error mode

*/
data

vw, va, vg, aa,
ag, aw, mode using file(speedcheck.csv);

model
features: vg - sqrt(vaˆ2 + vwˆ2
+ 2*va*vw*cos((PI/180)*(aw-aa)));

labels: mode;
algorithm:

DynamicBayesClassifier(
sigma_scale:2, threshold:100);

end

Fig. 23 Offline training parameters for the dynamic Bayes
classifier.

6.2.2 Online error detection and correction

PILOTS program Figure 24 shows the Speed-
Check Bayes PILOTS program using the dynamic

Bayes classifier to detects three modes: Normal, Pitot

tube failure, and GPS failure. The program outputs

the airspeed or estimated airspeed depending on the

detected mode.

Experimental settings The same dataset used in error

signature experiment in Section 6.1.2 is utilized as test-

ing set for PILOTS program described in Figure 24

with trained dynamic Bayes classifier in Section 6.2.1.

For dynamic Bayes classifier, we set the threshold of

creating new mode as 2σ and threshold of converting

minor mode to major mode as 200. Table 7 shows the

major modes contained in the dynamic Bayes classifier.

Results Using Section 5.1.2 as metric with delta = 5 for

response time, the accuracy is 91.0%, max/min/average

response times is 11{0{3.67 seconds. Since the dynamic

Bayes classifier changes its states as new data comes in,

the updated states are described in Table 8. Because the

training set is large and only the data points residing

'

&

$

%

program SpeedCheck_Bayes;
/* vw: wind speed, aw: wind speed angle

va: airspeed, aa: airspeed angle
vg: ground speed, ag: ground angle */

inputs
va, vg, vw (t) using closest(t);
aa, ag, aw (t) using closest(t);
mode (t) using model(speedcheck_mode_bayes,

va, vg, vw, aw, aa);
outputs
va_out: va at every 1 sec;

modes
m0: mode = 0 "Normal";
m1: mode = 1 "Pitot tube failure"

estimate va =
sqrt(vg*vg + vw*vw
- 2*vg*vw*cos((PI/180)*(ag-aw)));

m2: mode = 2 "GPS failure"
estimate vg =

sqrt(va*va + vw*vw
+ 2*va*vw*cos((PI/180)*(aw-aa)));

end

Fig. 24 Declarative specification of the SpeedCheck Bayes
PILOTS program.

Table 7 Major modes of dynamic Bayes classifier after
trained by training data.

Mode description Mode µ σ n
Normal 0 0.11 14.19 10000

Pitot tube failure 1 233.61 39.50 10000
GPS failure 2 -471.14 39.78 10000

inside 2σ of a mode are capable of changing attributes of

the mode, for major modes with id 0 to 2, the standard

deviation and mean stay nearly the same. The classifier

discovers new modes with id 3 to 5, which may suggest

some unconsidered cases are not covered in the training

dataset or the threshold of creating new mode is low

and results in noises and outliers to become new modes.

Since the threshold of converting minor mode to major

mode is 200, no new major modes are created.

The measured and estimated airspeed is illustrated

in Figure 25(a) and the detected modes are shown in

Figure 25(b). Pitot tube failure is captured and the

airspeed is estimated during 70, 75 to 97 seconds but

not 64 to 69, 71 to 74 seconds since the error func-

tion gives numbers greater than 2σ of every state in

trained dynamic Bayes classifier, and being classified

to new modes. The classifier successfully detects end of

pitot tube failure immediately under the resolution of 1

second. Interestingly, at 124 second, the classifier gives

mode 3, which is created at 62 second.

6.3 Summary of results

The max/min/average response times for both dynamic

Bayes classifier and error signatures method for PI-

LOTS program are identical. However, since the dy-

namic Bayes classifier contains newly created modes
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Table 8 Major and minor modes of dynamic Bayes classifier
after running testing data.

Mode
status

Mode
description

Mode µ σ n

Major
Normal 0 -0.07 14.0 10130

Pitot tube failure 1 233.62 39.50 10024
GPS failure 2 -471.14 39.78 10000

Minor
New mode 3 -38.26 9.59 5
New mode 4 104.01 8.80 2
New mode 5 332.25 14.30 5

Fig. 25 Speed error mode detection and correction using
dynamic Bayes classifier.

that have no corresponding estimation function pro-
vided, the failure mode accuracy is less than the one

produced by error signatures, and thus, the estimation

of airspeed is less complete than that computed by error

signatures. The dynamic Bayes classifier discovers new

modes, which could be attached to a new estimation

function, and requires offline training, while the error

signatures are not able to change dynamically but have

no requirement of training.

7 Related work

There is a large body of work in data-driven anomaly

detection. Mack et al. applied a data mining approach

to flight data to obtain aircraft failure models in the

form of a Bayesian network [28,27]. Scalable Bayesian

Network Learning (SBNL) [37] is a workflow framework

to learn Bayesian networks in a scalable manner based

on data-parallel ensemble learning. The map-reduce

like learning process is built using the Kepler scien-

tific workflow management system [26]. While Bayesian

networks can represent probabilistic relationships be-

tween multiple random variables in a graphical way,

our dynamic Bayes classifier is derived from a single

probability function. However, since the idea of de-

tecting new modes used in the dynamic Bayes classi-

fier is orthogonal to Bayesian networks, dynamic new

mode detection and Bayesian networks can complement

each other. Biswas et al. proposed a method to detect

anomalies for spacecraft operation using both unsuper-

vised and supervised learning [4]. They first detect new

operating modes or potential anomalies by clustering

input data, and then use supervised learning to dis-

tinguish new operating modes from anomalies. Their

approach is similar to our dynamic Bayes classifier in

that both approaches detect outliers as potential new

modes. They consult experts from NASA to confirm

if there are anomalies in the detected new modes; we

also argue for semi-supervised learning in our discussion

(Section 8). Das et al. use a multiple kernel learning

method to incorporate discrete (categorical) and con-

tinuous data, which are commonly observed in recorded

flight data, for anomaly detection [10]. Our PILOTS

framework can convert continuous data into discrete

data and its modular approach enables plugging in dif-

ferent machine learning algorithms, so Das et al.’s work

could be modeled using our framework.

There are several domain-specific languages (DSLs)

for machine learning (ML) and parallel processing [32].

OptiML [35] is a DSL designed for ML and can generate

target code for heterogeneous machines (i.e., CPUs and

GPUs). OptiML programs support vector, matrix, and

graph data types and provide a functional program-

ming style grammar. ScalOps [38] is a DSL for data

analytics, which enables map-reduce computation iter-

atively. In addition to the map and reduce functions,

it provides an update function to update a global state

before the next iteration. SCOPE [7] is a declarative

scripting language targeting for massive data analyses.

It provides parallel data processing capabilities through

an SQL-like grammar. It also supports the map-reduce

programming model, in which the user can implement

her own ML algorithms. These DSLs target data paral-

lel processing, which is not the main goal of PILOTS.

PILOTS is a DSL for data stream processing with er-

ror detection and correction, which enables modular

data-driven failure model learning. As opposed to some

of these DSLs for ML, PILOTS is purely declarative,

which trades expressiveness for ease of use.

PyMC [13] is a Python library for Bayesian statis-

tical models and fitting algorithms, including Markov

chain Monte Carlo. It also provides a lot of pre-defined

probability distributions as well as an extensible mech-
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anism that allows users to write their own stochas-

tic processes. Its flexibility and capability for Bayesian

analysis exceeds the current Bayesian model support

in PILOTS. PyMC and PILOTS can complement each

other, by integrating PyMC as one of the ML engines

in PILOTS through the adaptation layer. There is an

increasing number of ML algorithms and libraries (e.g.,

we use scikit-learn in Python) and our modular PI-

LOTS architecture is designed to easily integrate new

ML approaches to sensor failure modeling from data as

they become available.

In recent years, several works have been proposed

as data processing infrastructures for Dynamic Data

Driven Applications Systems (DDDAS) [9]. Ditzler et

al. presented the design of the High Performance Ma-

chine Learning (HPML) framework as a unified frame-

work for Big Data processing [12] with a focus on

batch machine learning. The HPML framework hides

the complexity of underlying computing resources (e.g.,

cluster of GPUs, cloud computing systems) from the

user and intends to provide high-level abstraction for

machine learning applications. Shekhar and Gokhale

proposed the concept of Dynamic Data Driven Cloud

and Edge Systems (D3CES) as a model for adaptive

cloud and edge computing resource management [34].

The D3CES targets cyber physical systems (CPS) and

Internet of Things (IoT) applications distributed across

edge and cloud computing resources. It continuously

monitors the application performance and elastically

scales resources to meet given task deadlines. Kambu-

rugamuve et al. studied the optimization of commu-

nication topology between worker processes for Apache

Storm [36], which is used as a base application platform

for Dynamic Data Driven Applications (DDDA) [24].

8 Discussion and future work

Semi-supervised learning for dynamic Bayes classifier

When using the dynamic Bayes classifier to detect

weight error, we noticed that the system could not only

detect “normal” and “underweight” modes, but also

classifies “5% overweight” and “15% overweight” as two

different modes as shown in Figure 26 and Table 9.

This information is useful if different strategies need to

be taken for different extent of weight errors, otherwise

it would be unnecessarily misleading to classify them

into different modes. Thus, the dynamic Bayes classi-

fier should be adjusted to the requirements of various

use cases. This would result in a semi-supervised on-

line learning approach, in which human experts give

ground truth to distinguish anomalies from new oper-

ating modes.

Future work for our dynamic Bayes classifier in-

cludes to involve human feedback in the online learning

phase, especially when a new major mode is detected,

to get more accurate failure mode classification and de-

cision making. Our dynamic Bayes classifier produces

results that depend on the order it sees new data. We

need to devise new techniques to make data ingestion

associative and commutative, so that classification (es-

pecially new modes) is data-order independent. Sup-

port for multiple features and techniques for determin-

ing thresholds for converting minor modes into major

modes will also be explored.

Fig. 26 Another weight error mode detection using dynamic
Bayes classifier.

Table 9 Major and minor modes of dynamic Bayes classifier
after running testing data.

Mode
status

Mode
description

Mode µ σ n

Major
Normal 0 -33 2462 6544

Underweight 1 15898 3312 1708

Minor
5% Overweight 2 -6922 239 54
15% Overweight 3 -17450 277 91

Real-time execution of PILOTS programs For the real-

time mode, the PILOTS runtime system is currently

designed to execute programs in a best-effort basis. For

example, even if the output rate is every second, the ap-

plication could take more than one second to compute

outputs, depending on the complexity of computation.
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Table 10 shows average latency per one output cycle for

three types of error detection methods measured on a

laptop computer (CPU: Intel Core i5-6200U 2.30GHz,

Memory: 8GB). They are in the order of milliseconds,

and therefore, there have been no issues to keep the

output rate of one second that we use throughout this

paper.

Table 10 Comparison of latency per one output cycle.

Error Linear Dynamic
Signatures Regression Bayes Classifier

2.41 ms 7.78 ms 8.55 ms

The current compiler implementation generates a

single thread per output stream. If we were to ana-

lyze hundreds of input streams producing hundreds of

output streams, we would need to allocate enough pro-

cesses to these hundreds of threads to maintain latency

and throughput requirements. Moreover, the machine

learning component could be a bottleneck when pro-

cessing such a large number of streams simultaneously.

Thus, we would have to run it on a scalable data pro-

cessing system and scale up its performance to keep

up with the increasing number of input streams. To

maintain the required performance in streaming sys-

tems, it is important to obtain a performance predic-

tion model and proactively allocate enough computing

resources [18].

Also, internal communication between the mode es-

timation subsystem and the core PILOTS system can

hurt the realtime-ness of the application execution.

Suppose the core PILOTS system runs on an airplane
while the mode estimation subsystem runs in the cloud

for scalability, latency could be up to hundreds of mil-

liseconds. To guarantee stronger realtime processing, we

could implement a progressive mode estimation mecha-

nism with increasing estimation accuracy and timeout

the mode estimation before the deadline. Distributed,

scalable, and fault-tolerant data streaming systems in-

clude MillWheel [1], Storm [36], and Spark Stream-

ing [39]. SAMOA [29] provides a streaming ML pro-

gramming framework that supports multiple stream

processing engines. Since these systems are expected

to run over many computer nodes, they are designed

to continue producing correct results with reasonably

degraded performance even in the case of node failures.

Other research directions Machine learning techniques

could also be used to learn parameters in error sig-

natures from data. Another possible direction is to

combine logic programming and probabilistic program-

ming, as in ProbLog [11], to help analyze spatio-

temporal data streams. Finally, uncertainty quantifica-

tion [2] is another important future direction to asso-

ciate confidence to data and error estimations in sup-

port of decision making.

9 Conclusion

In this paper, we presented a highly-declarative pro-

gramming framework that facilitates the development

of self-healing avionics applications, which can detect

and recover from data errors. Our programming frame-

work enables specifying expert-created failure models

using error signatures, as well as obtaining failure mod-

els from data by machine learning. Also, we investigated

both linear regression and dynamic Bayesian learning

approaches to data-driven fault detection in avionics.

We applied a linear regression approach to learn the

relationship between coefficient of lift and angle of at-

tack during cruise flight. With the training results, and

Equation (9) to calculate airplane weight during cruise

phase, the PILOTS program successfully detects and

corrects underweight and overweight conditions in sim-

ulated flight data by using error signatures. Using our

dynamic Bayes classifier, when the system is trained

with normal and underweight data, the PILOTS pro-

gram is able to detect a new mode when an overweight

situation occurs in the online learning phase. Error

signatures require more specific patterns for detecting

faults, while our dynamic Bayes classifier uses data to

learn different operating modes. Our dynamic Bayes

classifier detects statistically significant new modes dur-

ing the online learning phase, while our error signatures

approach can only detect pre-defined modes.
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Appendix A Core PILOTS runtime library

The core PILOTS runtime library is in charge of start-

ing a data receiving server, storing received data, pro-

viding data selection/interpolation service to the ap-

plication, and sending processed data to output/error

hosts.

Primary classes included in the PILOTS runtime

library shown in Figure 27 are explained as follows.

– PilotsRuntime class is extended by the application

and provides all basic functions to run a PILOTS

application other than application-specific process-

ing. It starts DataReceiver to start receiving data,

requests stored data from DataStore, and sends cal-

culated outputs and errors to other hosts.

– DataReceiver class receives data from data input

clients from a port specified in the command-line

arguments. Upon accepting data, it launches a new

worker thread to receive data and the created thread

requests to add these data to DataStore.
– DataStore class accepts data from DataReceiver as a

string, and then it asks SpatioTempoData to parse

the string and stores the parsed data. It also im-

plements getData() method supporting closest, eu-
clidean, interpolate for data selection. When com-

paring locations and time for data selection/inter-

polation, it asks for the current time and loca-

tion from CurrentLocationTimeService. Stored data

are accessed from multiple threads (i.e., threads for

adding data from DataReceiver vs. threads getting

data from PilotsRuntime), so the data have to be

protected from simultaneous data access.

– CurrentLocationTimeService class is an interface

class for providing the current time and location.

Users have to implement this class for the system

to work (e.g., SimpleTimeService and SimulationSer-
vice). The implemented class can either return the

actual current time for the real-time mode or past

time for the simulation mode.

Appendix B PILOTS with machine learning

component grammar design

The grammar of the PILOTS programming language

with machine learning component is designed as shown

in Figure 28. Also, the grammar of the PILOTS trainer

file is shown in Figure 293.

3Note: the current version (v0.4) of PILOTS does not fully
support the grammar shown here as of October 2017.



Dynamic data-driven learning for self-healing avionics 23

Fig. 27 Class diagram of PILOTS runtime library.'

&

$

%

Program ::= program Var;
constants Constants
inputs Inputs
outputs Outputs
[errors Errors]
[signatures Signatures]
[modes Modes]

end
Constants ::= [(Constant;)* Constant];
Constant ::= Var = Exp;
Inputs ::= [(Input;)* Input];
Input ::= Vars: Dim using Methods;
Outputs ::= [(Output;)* Output];
Output ::= Vars: Exps at every Time

[when (Var | Exp) [Integer times]];
Errors ::= [(Error;)* Error];
Error ::= Vars: Exps;
Signatures ::= [(Signature;)* Signature];
Signature ::= Var [Const]: Var = Exps String [Estimate];
Estimate ::= Estimate Var = Exp;
Modes ::= [(Mode;)* Mode];
Mode ::= Var: Var = Exps String [Estimate];
Dim ::= ’(t)’ | ’(x,t)’ | ’(x,y,t)’ | ’(x,y,z,t)’
Methods ::= Method | Method, Methods
Method ::= (closest | euclidean | interpolate | model)

’(’ Exps ’)’
Time ::= Number (msec | sec | min | hour)
Exps ::= Exp | Exp, Exps
Exp ::= Func (Exps) | Exp Func Exp |

’(’ Exp ’)’ | Value
Func = { +, -, *, /, sqrt, sin, cos, tan, abs, . . . }
Value ::= Number | Var
Number ::= Sign Digits | Sign Digits’.’Digits
Sign ::= ’+’ | ’-’ | ”
Integer ::= Sign Digits
Digits ::= Digit | Digits Digit
Digit = { 0, 1, 2, . . . ,9 }
Vars ::= Var | Var, Vars
Var = { a, b, c, . . . }
String = { “a”, “b”, “c”, . . . }

Fig. 28 PILOTS with machine learning component gram-
mar design.

Appendix C Example generated Java code

Generated Java code for the Twice PILOTS program

(Figure 1) is shown in Figure 30. Also, the difference

in generated Java code between Twice (Figure 1) and

Twice Signatures (Figure 4) PILOTS programs is shown

'

&

$

%

Trainer ::= trainer Var;
constants Constants
data

Data
[Schema]

model
[Preprocess]
Features
Labels
Algorithm

end
Constants ::= [(Constant;)* Constant];
Constant ::= Var = Exp
Data ::= [(DataItem;)* DataItem];
DataItem ::= Vars using (File | ModelUser)
File ::= file’(’String’)’
ModelUser ::= model’(’Vars’)’
Schema ::= schema unit’(’Map’)’;
Preprocess ::= preprocess [changeunit using unit’(’Map’)’];
Features ::= features: Exps;
Labels ::= labels: Exps;
Algorithm ::= Var [’(’Map’)’];
Map ::= MapItem | MapItem, Map
MapItem ::= Var ’:’ (Number | Var | Exp)

Fig. 29 PILOTS trainer file grammar design (Note: for the
non-terminals not defined here, refer to Figure 28).'
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%

public class Twice extends PilotsRuntime {
private Timer timer_;
private SlidingWindow win_e_;
private Vector<ErrorSignature> errorSigs_;
private ErrorAnalyzer errorAnalyzer_;

public Twice(String args[]) {
parseArgs(args);
timer_ = new Timer();
win_e_ = new SlidingWindow(getOmega());
errorSigs_ = new Vector<ErrorSignature>();
errorAnalyzer_ = new ErrorAnalyzer(
errorSigs_, getTau());

}

public void startOutput_e() {
openSocket(OutputType.Output, 0, "e");
timer_.scheduleAtFixedRate(new TimerTask() {
public void run() {
Value a = new Value();
Value b = new Value();
a.setValue(getData( "a",
new Method(Method.Closest, "t")));

b.setValue(getData( "b",
new Method( Method.Closest, "t")));

double e = (b.getValue() - 2*a.getValue());
sendData(OutputType.Output, 0, e);}

}, 0, 1000);
}

public static void main(String[] args) {
Twice app = new Twice(args);
app.startServer();
app.startOutput_e();

}
}

Fig. 30 Generated Java code for the Twice PILOTS program
shown in Figure 1.

in Figure 31. Note that the difference is generated by

the following Linux command:

$ diff Twice.java Twice Signatures.java
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&

$

%

< public class Twice extends PilotsRuntime {
---
> public class Twice_Signatures extends PilotsRuntime {
14c14
< public Twice(String args[]) {
---
> public Twice_Signatures(String args[]) {
26a27,30
> errorSigs_.add(new ErrorSignature(ErrorSignature.CONST, 0.0, "Normal mode"));
> errorSigs_.add(new ErrorSignature(ErrorSignature.LINEAR, 2.0, "A failure"));
> errorSigs_.add(new ErrorSignature(ErrorSignature.LINEAR, -2.0, "B failure"));
>
29a34,56
> public void getCorrectedData(SlidingWindow win,
> Value a, Value a_corrected,
> Value b, Value b_corrected,
> Mode mode, int frequency) {
> a.setValue(getData("a", new Method(Method.Closest, "t")));
> b.setValue(getData("b", new Method(Method.Closest, "t")));
> double e = (b.getValue()-2*a.getValue());
>
> win.push(e);
> mode.setMode(errorAnalyzer_.analyze(win, frequency));
>
> a_corrected.setValue(a.getValue());
> b_corrected.setValue(b.getValue());
> switch (mode.getMode()) {
> case 1:
> a_corrected.setValue(b.getValue()/2);
> break;
> case 2:
> b_corrected.setValue(a.getValue()*2);
> break;
> }
> }
>
40a68
> Value a_corrected = new Value();
41a70,71
> Value b_corrected = new Value();
> Mode mode = new Mode();
43,45c73,74
< a.setValue(getData("a", new Method(Method.Closest, "t")));
< b.setValue(getData("b", new Method(Method.Closest, "t")));
< double o = (b.getValue()-2*a.getValue());
---
> getCorrectedData(win_o_, a, a_corrected, b, b_corrected, mode, frequency);
> double o = (b_corrected.getValue()-2*a_corrected.getValue());
57c86
< Twice app = new Twice(args);
---
> Twice_Signatures app = new Twice_Signatures(args);

Fig. 31 Difference in generated Java code between Twice (Figure 1) and Twice Signatures (Figure 4) PILOTS programs.


